Skip to main content

Antiresonances

  • Chapter
  • First Online:
Nonlinear Resonances

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

In a linear or nonlinear oscillator with a single degree of freedom subjected to an additive periodic driving force with a single frequency a typical frequency-response curve displays a single resonance peak as shown in the introductory chapter. In a linear and undamped system the response amplitude becomes a maximum when the frequency of the driving force matches with the natural frequency of the system. In other oscillators a single resonance peak occurs at a frequency different from their natural frequencies. In a N-coupled linear oscillators with first oscillator alone driven by an additive periodic force, for certain types of interaction (coupling) the frequency-response curve of each oscillator exhibits at most N peaks (maxima) depending upon the values of the parameters of the oscillators [1]. The peaks are the resonance (and the corresponding frequencies are the resonant frequencies). The valleys in the frequency-response curve are the antiresonance frequencies. There are N − 1 antiresonance frequencies. In the absence of damping, for the driving frequency equal to the antiresonance frequencies the response amplitude vanishes. The multiple resonance and antiresonance phenomena occur in nonlinear systems also. Using resonance a dynamical system can be effected to give rise to the most effective signal output. On the other hand, an antiresonance is useful to make the system to deliver the lower signal output. These can be realized in systems subjected to different kinds of external perturbations. Antiresonances can occur in all types of coupled oscillator systems, including mechanical, acoustic, electromagnetic and quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Belbasi, M.E. Foulaadvand, Y.S. Joe, Am. J. Phys. 82, 32 (2014)

    Article  ADS  Google Scholar 

  2. Z. Agur, J. Theor. Med. 1, 237 (1998)

    Article  Google Scholar 

  3. W. D’Ambrogio, A. Fregolent, J. Sound Vib. 236, 227 (2000)

    Article  ADS  Google Scholar 

  4. K. Jones, J. Turcotte, J. Sound Vib. 252, 717 (2002)

    Article  ADS  Google Scholar 

  5. D. Hanson, T.P. Waters, D.J. Thompson, R.B. Randall, R.A.J. Ford, Mech. Syst. Signal Process. 21, 74 (2007)

    Article  ADS  Google Scholar 

  6. J.E. Mottershead, Mech. Syst. Signal Process. 12, 591 (1998)

    Article  ADS  Google Scholar 

  7. B. Lysyansky, O.V. PopoVych, P.A. Tass, J. Neural Eng. 8, 036019 (2011)

    Article  ADS  Google Scholar 

  8. K. Uchino, Smart Mater. Struct. 7, 273 (1998)

    Article  ADS  Google Scholar 

  9. W.B. Jeong, W.S. Yoo, J.Y. Kim, KSME Int. J. 17, 1732 (2003)

    Article  Google Scholar 

  10. N.C. Lien, G.C. Yao, J. Chin. Inst. Eng. 24, 45 (2001)

    Article  Google Scholar 

  11. F. Wahl, G. Schmidt, L. Forrai, J. Sound Vib. 219, 379 (1999)

    Article  ADS  Google Scholar 

  12. C. Sames, H. Chibami, C. Hamsen, P.A. Altin, T. Wiek, G. Rempe, Phys. Rev. Lett. 112, 043601 (2014)

    Article  ADS  Google Scholar 

  13. P. Rice, R. Breacha, Opt. Commun. 126, 230 (1996)

    Article  ADS  Google Scholar 

  14. Y. Liu, Y. Zheng, W. Gong, T. Lu, Phys. Lett. A 360, 154 (2006)

    Article  ADS  Google Scholar 

  15. M.I. Dykman, M.V. Fistul, Phys. Rev. B 71, 10508 (2005)

    Article  Google Scholar 

  16. S. Rajamani, S. Rajasekar, Phys. Scr. 88, 015010 (2013)

    Article  ADS  Google Scholar 

  17. S. Chakraborty, A. Sarkar, Physica D 254, 24 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Pesek, A. Tondl, Eng. Mech. 19, 333 (2012)

    Google Scholar 

  19. A. Tondl, T. Ruijgrok, F. Verhulst, R. Nabergoj, Autoparametric Resonance in Mechanical Systems (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  20. A. Tondl, L. Pust, Eng. Mech. 17, 135 (2010)

    Google Scholar 

  21. A. Tondl, Eng. Mech. 15, 297 (2008)

    Google Scholar 

  22. M. Pelletier, B. Leang, Antiresonance and vibration suppression application in servo systems. Design News (2010). Document ID 229181

    Google Scholar 

  23. J. Welte, T.J. Kniffka, H. Ecker, Shock Vib. 20, 1113 (2013)

    Article  Google Scholar 

  24. H. Ecker, I. Rottensteiner, Nonlinear Model Appl. 2, 149 (2011)

    Google Scholar 

  25. F. Dohnal, Acta. Mech. 196, 15 (2008)

    Article  Google Scholar 

  26. F.C. Blondeau, Phys. Lett. A 232, 41 (1997)

    Article  ADS  Google Scholar 

  27. L.S. Borkowski, Phys. Rev. E 82, 041909 (2010)

    Article  ADS  Google Scholar 

  28. D.P.K. Ghikas, A.C. Tzemos, Int. J. Quantum Inf. 10, 1250023 (2012)

    Article  Google Scholar 

  29. N.V. Agudov, A.V. Krichigin, Radiophys. Quantum Electron. 51, 812 (2008)

    Article  ADS  Google Scholar 

  30. M. Evstigneev, P. Reimann, V. Pankov, R.H. Prince, Europhys. Lett. 65, 7 (2004)

    Article  ADS  Google Scholar 

  31. P. Zhu, D.C. Mei, Eur. Phys. J. B 87, 109 (2014)

    Article  ADS  Google Scholar 

  32. X. Sum, M. Perc, Q. Lu, J. Kurths, Chaos 18, 023102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Ji, X. Wei, Q. Jin, M. Yu, Noise induced anticoherence resonance in a delayed circadian rhythm system, in Proceedings of the International Workshop on Chaos-Fractals Theories and Applications (IEEE Computer Society, 2009), p. 103

    Google Scholar 

  34. Y. Gao, J. Wang, Phy. Rev. E 86, 051914 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rajasekar, S., Sanjuan, M.A.F. (2016). Antiresonances. In: Nonlinear Resonances. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-24886-8_14

Download citation

Publish with us

Policies and ethics