Advertisement

Coherence and Chaotic Resonances

  • Shanmuganathan Rajasekar
  • Miguel A. F. Sanjuan
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

Real systems are subjected to certain amount of unavoidable internal or external random perturbations, usually termed as noise. The presence of noise is not only unavoidable in electrical and electronic devices, but it can significantly affect their performance. As pointed out in the beginning of Chap. 2, a variety of phenomena can be induced by the presence of noise. An oscillating system in which noise is significant and is the source of its oscillatory dynamics, then it is generally called an stochastic oscillator. A mathematical model of such a system in the absence of noise and external periodic force does not exhibit any kind of oscillatory motion. A stochastic oscillator can be monostable, multistable or excitable. In certain cases the effect of noise in a stochastic oscillator is nontrivial. That is, the increase of noise intensity need not always increase the irregularity of the response. An appropriate weak noise can give rise to a maximum coherence similar to the stochastic resonance but in the absence of any external periodic force.

Keywords

Equilibrium Point Noise Intensity Stochastic Resonance Excitable System Coherence Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Gang, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Linder, L. Schimanwky-Geier, Phys. Rev. E 61, 6103 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    C. Palenzuela, R. Toral, C.R. Mirasso, O. Calvo, J.D. Gunton, Europhys. Lett. 56, 347 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    E. Ippen, J. Lindner, W.L. Ditto, J. Stat. Phys. 70, 437 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    S. Zambrano, J.M. Casado, M.A.F. Sanjuan, Phys. Lett. A 366, 428 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Arathi, S. Rajasekar, J. Kurths, Int. J. Bifurcation Chaos 23, 1350132 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    W.J. Rappel, S.H. Strogatz, Phys. Rev. E 50, 3249 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liu, Y. Lai, Phys. Rev. Lett. 86, 4737 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Murray, Mathematical Biology (Springer, Berlin, 1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)zbMATHGoogle Scholar
  12. 12.
    P.M. Gade, R. Rai, H. Singh, Phys. Rev. E 56, 2518 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos, an Introduction to Dynamical Systems (Springer, New York, 1996)zbMATHGoogle Scholar
  14. 14.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, Indian edition (Foundation Books, New Delhi, 1993)zbMATHGoogle Scholar
  15. 15.
    G.E.P. Box, M.E. Muller, Ann. Math. Stat. 29, 610 (1958)CrossRefGoogle Scholar
  16. 16.
    E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Borgogno, P. D’odorico, F. Laio, L. Ridolfi, J. Theor. Biol. 293, 65 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Sieber, H. Malchow, L. Schimanksy-Geier, Ecol. Complex. 4, 223 (2007)CrossRefGoogle Scholar
  19. 19.
    G. Giacomelli, M. Giudici, S. Balle, J.R. Tredice, Phys. Rev. Lett. 84, 3298 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    K. Mujakawa, H. Isikawa, Phys. Rev. E 66, 046204 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    A. Kolbus, A. Lemarchand, A.L. Kawcyzynski, B. Nowakowski, Phys. Chem. 12, 13224 (2010)Google Scholar
  22. 22.
    V.P. Munuzuri, R. Deza, K. Fraedrich, T. Kunz, F. Lunkeit, Phys. Rev. E 71, 065602 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    O. Carrillo, M.A. Santos, G. Garcia-Ojalvo, J.M. Sancho, Europhys. Lett. 65, 452 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    C.Y. Lee, W. Choi, J.H. Han, M.S. Strano, Science 329, 1320 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Gosak, M. Perc, Phys. Rev. E 76, 037201 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    C.S. Zhou, J. Kurths, B. Hu, Phys. Rev. Lett. 87, 098101 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    C.S. Zhou, J. Kurths, Chaos 13, 401 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    H.S. Wio, Phys. Rev. E 54, R3075 (1995)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S.K. Han, T.G. Yim, D.E. Postrov, O.V. Sosnovtseva, Phys. Rev. Lett. 83, 1771 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Liu, Y.C. Lai, Phys. Rev. Lett. 86, 4737 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Y.C. Lai, Z. Liu, Phys. Rev. E 64, 066202 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    M. Zhan, G.W. Wei, C.H. Lai, Y.C. Lai, Z. Liu, Phys. Rev. E 66, 036201 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    M. Perc, Chaos Solitons Fractals 31, 64 (2007)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Gosak, M. Marhl, M. Perc, Biophys. Chem. 128, 210 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Phys. Rev. E 81, 011106 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    C. Otto, B. Lingnau, E. Scholl, K. Ludge, Opt. Exp. 22, 13288 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    J. Rajhans, A.N. Sekar Iyengar (1 Dec 2013). arXiv:1312.02031v1 [nlin.CD]Google Scholar
  38. 38.
    M. Gosak, D. Korosak, M. Marhl, Phys. Rev. E 81, 056104 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    S. Biswas, D. Das, P. Parmananda, A. Sain, Phys. Rev. E 80, 046220 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Jim, H. Hu, Physica A 382, 423 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Arteaga, M. Valencia, M. Sciamana, H. Thienpont, M. Lopez-Amo, K. Panajotov, Phys. Rev. Lett. 99, 023903 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    R. Aust, P. Hovel, J. Hizanidis, E. Scholl, Eur. Phys J. Special Topics 187, 77 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    T. Tang, Y. Jia, M. Yi, J. Ma, J. Li, Phys. Rev. E 77, 061905 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Gong, Y. Xie, Y. Hao, J. Chem. Phys. 130, 165106 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    V. Beato, I.S. Nadal, I. Gerdes, H. Enge, Phil. Trans R. Soc. A 366, 381 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    A. Zakharova, A. Feoktistov, T. Vadivasova, E. School, Eur. Phys. J. Special Topics 222, 2481 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    M. Perc, M. Marhl, Phys. Rev. E 73, 066205 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    X. Lin, Y. Gong, L. Wang, Chaos 21, 043109 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    X. Sun, M. Perc, Q. Lu, J. Kurths, Chaos 18, 023102 (2008)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    M. Perc, Chaos Solitons Fractals 31, 280 (2007)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Perc, New J. Phys. 7, 252 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    C. Men, J. Wang, Y.M. Qin, B. Deng, K.M. Tsang, W.L. Chan, Chaos 22, 013104 (2012)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    O. Calvo, C.R. Mirasso, R. Toral, Elect. Lett. 37, 1062 (2001)CrossRefGoogle Scholar
  54. 54.
    Y. Li, J. Rinzel, J. Theor. Biol. 166, 461 (1994)CrossRefGoogle Scholar
  55. 55.
    J.W. Shuai, P. Jung, Phys. Rev. Lett. 88, 068102 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Morishita, T.J. Kobayashi, K. Aihara, Biophys. J. 91, 2072 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    Z.H. Hou, J.Q. Zhang, H.W. Xin, Phys. Rev. E 74, 031901 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shanmuganathan Rajasekar
    • 1
  • Miguel A. F. Sanjuan
    • 2
  1. 1.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations