Advertisement

Autoresonance

  • Shanmuganathan Rajasekar
  • Miguel A. F. Sanjuan
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

Autoresonance (also called self-sustained resonance) is a phenomenon that occurs when a resonant forced nonlinear system stays phase-locked with an adiabatically varying driving force whose frequency is a function of time [1, 2]. Essentially, the system automatically adjusts its amplitude continuously so that its instantaneous period of oscillation matches with the period of the driving force leading to the growth of its energy. That is, autoresonance is a method of exciting a nonlinear dynamical system to high energies by means of a weak driving force whose frequency is varying with time. Autoresonance was first realized in relativistic particle accelerators [3] and in the analysis of the cyclotron resonance stability [4].

Keywords

Plasma Wave Wave Guide Heteroclinic Orbit Phase Mismatch Pendulum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Meerson, L. Friedland, Phys. Rev. A 41, 5233 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    J. Fajans, L. Friedland, Am. J. Phys. 69, 1096 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    M.S. Livingstone, High Energy Accelerators (Interscience, New York, 1954)Google Scholar
  4. 4.
    A.A. Kolomenski, A.N. Lebedev, Dokl. Akad. Nauk SSSR 145, 1259 (1962)Google Scholar
  5. 5.
    J. Fajans, E. Gilson, L. Friedland, Phys. Rev. E 62, 4131 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    E. Khain, B. Meerson, Phys. Rev. E 64, 036619 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    O.B. David, M. Assaf, J. Fineberg, B. Meerson, Phys. Rev. Lett. 96, 154503 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    G. Cohen, B. Meerson, Phys. Rev. E 47, 967 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    V. Rokni, L. Friedland, Phys. Rev. E 59, 5242 (1999)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Nakar, L. Friedland, Phys. Rev. E 60, 5479 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    R. Chacon, Europhys. Lett. 70, 56 (2005)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Uzdin, L. Friedland, O. Gat, Phys. Rev. E 89, 012902 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Assaf, B. Meerson, Phys. Rev. E 72, 016310 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics, 3rd edn. (Addison-Wesley, Reading, 2001)zbMATHGoogle Scholar
  15. 15.
    M. Abramowitz, Hand Book of Mathematical Functions (National Bureau of Standards, Washington, DC, 1964)Google Scholar
  16. 16.
    A. Kovaleva, L.I. Manevitch, Phys. Rev. E 88, 024901 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods (Springer, New York, 1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    L.I. Manevitch, A.S. Kovaleva, D.S. Shepelev, Physica D 240, 1 (2011)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Barak, Y. Lamhot, L. Friedland, M. Segev, Phys. Rev. Lett. 103, 123901 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    W.I. Kruer, The Physics of Laser Plasma Interactions (Westview Press, Boulder, 2001)Google Scholar
  21. 21.
    C.R. Menyuk, A.T. Drobot, K. Papadopoulos, H. Karimabadi, Phys. Fluids 31, 3768 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    A. Yariv, Quantum Electronics (Wiley, New York,1989)Google Scholar
  23. 23.
    A.P. Mayer, Phys. Rep. 256, 237 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    K. Trulsen, C.C. Mei, J. Fluid Mech. 290, 345 (1995)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    O. Yaakobi, L. Friedland, Phys. Rev. A 82, 023820 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, R. Morandotti, Opt. Exp. 21, 1623 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    O. Yaakobi, L. Friedland, Phys. Plasmas 15, 102104 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    E.M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge, 2008)Google Scholar
  29. 29.
    L. Friedland, Phys. Rev. E 58, 3865 (1998)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Aranson, B. Meerson, T. Tajima, Phys. Rev. A 45, 7500 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    L. Friedland, Phys. Rev. E 55, 1929 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    L. Friedland, Phys. Rev. E 57, 3494 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    L. Friedland, Phys. Plasmas 5, 645 (1998)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    G. Marcus, L. Friedland, A. Zigler, Phys. Rev. A 69, 013407 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    J.M. Yuan, W.K. Liu, Phys. Rev. A 57, 1992 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    T. Witte, T. Hornung, L. Windhom, D. Proch, R. de Vivie-Riedle, M. Motzkus, K.L. Kompa, J. Chem. Phys. 118, 2021 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    D.J. Maas, D.I. Duncan, R.B. Vrijen, W.J. Van der Zande, L.D. Noordam, Chem. Phys. Lett. 290, 75 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    S. Chelkowski, A.D. Bandrauk, P.B. Corkum, Phys. Rev. Lett. 65, 2355 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)zbMATHGoogle Scholar
  40. 40.
    S. Rajasekar, R. Velusamy, Quantum Mechanics I: The Fundamentals (CRC Press, New York, 2014)zbMATHGoogle Scholar
  41. 41.
    J. Wang, J.D. Champagne, Am. J. Phys. 76, 493 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    I. Barth, L. Friedland, Phys. Rev. Lett. 113, 040403 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    W.K. Liu, B.R. Wu, J.M. Yuan, Phys. Rev. Lett. 75, 1292 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    G. Marcus, L. Friedland, A. Zigler, Phys. Rev. A 72, 033404 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    H. Maeda, J. Nunkaew, T.F. Gallagher, Phys. Rev. A 75, 053417 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    D. Bohm, L. Foldy, Phys. Rev. 70, 249 (1946)ADSCrossRefGoogle Scholar
  47. 47.
    L. Friedland, A.G. Shagalov, Phys. Rev. Lett. 90, 074101 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    L. Friedland, A.G. Shagalov, Phys. Rev. E 71, 036206 (2005)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    L. Friedland, Phys. Rev. E 59, 4106 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    L. Friedland, A.G. Shagalov, Phys. Rev. Lett. 85, 2941 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    M.A. Borich, L. Friedland, Phys. Fluids 20, 086602 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    M. Deutsch, J.E. Golub, B. Meerson, Phys. Fluids B 3, 1773 (1991)ADSCrossRefGoogle Scholar
  53. 53.
    J. Fajans, E. Gilson, L. Friedland, Phys. Rev. Lett. 82, 4444 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    O. Naaman, J. Aumentado, L. Friedland, J.S. Wurtele, I. Siddiqi, Phys. Rev. Lett. 101, 117005 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    R. Malhotra, Sci. Am. 281, 56 (1999); L. Friedland, Astrophys. J. 547, L75 (2001)Google Scholar
  56. 56.
    D.V. Makarov, E.V. Sosedko, M. Yu. Uleysky, Eur. Phys. J. B 73, 571 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    G. Klughertz, P.A. Hervieux, G. Manfredi, J. Phys. D. Appl. Phys. 47, 345004 (2014)CrossRefGoogle Scholar
  58. 58.
    A.G. Shagalov, L. Friedland, Physica D 238, 1561 (2009) and references thereinGoogle Scholar
  59. 59.
    G.A. Brucker, G.J. Rathbone, Int. J. Mass Spectrom. 295, 133 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    L. Friedland, Phys. Plasmas 2, 1393 (1995)ADSCrossRefGoogle Scholar
  61. 61.
    L. Friedland, J. Fajans, E. Gilson, Phys. Plasmas 7, 1712 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    J. Fajans, E. Gilson, L. Friedland, Phys. Plasmas 8, 423 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    L. Friedland, A.G. Shagalov, Phys. Fluids 14, 3074 (2002)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    S. Voronina, V. Babitsky, J. Sound Vib. 313, 395 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    G.B. Andresen et al., (ALPHA collaboration), Phys. Rev. Lett. 106, 025002 (2011)Google Scholar
  66. 66.
    O. Naaman, J. Aumentado, L. Friedland, J.S. Wurtele, I. Siddiqi, Phys. Rev. Lett. 101, 117005 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    G. Manfredi, P.A. Hervievx, Appl. Phys. Lett. 91, 061108 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    R.R. Lindberg, A.E. Charman, J.S. Wurtele, L. Friedland, B.A. Shadwick, Phys. Plasmas 13, 123103 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    V.I. Babitsky, I.J. Sokolov, Nonlinear Dyn. 50, 447 (2007)CrossRefGoogle Scholar
  70. 70.
    G. Manfredi, P.A. Hervieux, F. Haas, New. J. Phys. 14, 075012 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    K.W. Murch, E. Ginossar, S.J. Weber, R. Vijay, S.M. Grrin, I. Siddiqi, Phys. Rev. B 86, 220503 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    C. Witkov, L.S. Liebovitch, J. Sound Vib. 329, 154 (2010)CrossRefGoogle Scholar
  73. 73.
    O. Ben-David, M. Assaf, J. Fineberg, B. Meerson, Phys. Rev. Lett. 96, 154503 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    J.N. Fox, J.J. Arlotto, Am. J. Phys. 36, 326 (1968)ADSCrossRefGoogle Scholar
  75. 75.
    H.J. Janssen, R. Serneels, L. Beerden, E.L.M. Flerackers, Am. J. Phys. 51, 655 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shanmuganathan Rajasekar
    • 1
  • Miguel A. F. Sanjuan
    • 2
  1. 1.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations