Spreading, Nonergodicity, and Selftrapping: A Puzzle of Interacting Disordered Lattice Waves

  • Sergej FlachEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 173)


Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transitions, the quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays, to name just a few examples. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field of lattice waves. In particular it leads to the prediction and observation of two different regimes of destruction of Anderson localization—asymptotic weak chaos, and intermediate strong chaos, separated by a crossover condition on densities. On the other side approximate full quantum interacting many body treatments were recently used to predict and obtain a novel many body localization transition, and two distinct phases—a localization phase, and a delocalization phase, both again separated by some typical density scale. We will discuss selftrapping, nonergodicity and nonGibbsean phases which are typical for such discrete models with particle number conservation and their relation to the above crossover and transition physics. We will also discuss potential connections to quantum many body theories.


Wave Packet Nonlinear Wave Equation Gibbs Distribution Anderson Localization Discrete Breather 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Clement, A.F. Varon, J.A. Retter, L. Sanchez-Palencia, A. Aspect, P. Bouyer, New J. Phys. 8, 165 (2006); L. Sanches-Palencia, D. Clement, P. Lugan, P. Bouyer, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 98, 210401 (2007); J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008); G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio. Nature 453, 895 (2008)Google Scholar
  5. 5.
    O. Morsch, M. Oberthaler, Rep. Prog. Phys. 78, 176 (2006)Google Scholar
  6. 6.
    YuS Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, Amsterdam, 2003)Google Scholar
  7. 7.
    K.Ø. Rasmussen, T. Cretegny, P.G. Kevrekidis, N. Grønbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    M. Johansson, K.Ø. Rasmussen, Phys. Rev. E 70, 066610 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Rumpf, EPL 78, 26001 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B. Rumpf, Phys. Rev. E 77, 036606 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B. Rumpf, Phys. D 238, 2067 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Flach, C.R. Willis, Phys. Rep. 295, 181 (1998); D.K. Campbell, S. Flach, Y.S. Kivshar, Phys. Today 57 (1), 43 (2004); S. Flach, A.V. Gorbach. Phys. Rep. 467, 1 (2008)Google Scholar
  13. 13.
    D.M. Basko, Phys. Rev. E 89, 022921 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Phys. Rev. Lett. 100, 084103 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    T.V. Laptyeva, M.V. Ivanchenko, S. Flach, J. Phys. A 47, 493001 (2014)CrossRefGoogle Scholar
  17. 17.
    A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Flach, D. Krimer, Ch. Skokos, Phys. Rev. Lett. 102, 024101 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Johansson, G. Kopidakis, S. Aubry, Europhys. Lett. 91, 50001 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J. Bodyfelt, T.V. Laptyeva, Ch. Skokos, D. Krimer, S. Flach. Phys. Rev. E 84, 016205 (2011)Google Scholar
  22. 22.
    T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos, S. Flach, EPL 91, 30001 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S. Flach, arxiv:1405.1122Google Scholar
  24. 24.
    M.V. Ivanchenko, T.V. Laptyeva, S. Flach, Phys. Rev. Lett. 107, 240602 (2011)Google Scholar
  25. 25.
    S. Flach, Chem. Phys. 375, 548 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966); Y.B. Zeldovich, A. Kompaneets, in Collected Papers of the 70th Anniversary of the Birth of Academician, A.F. Ioffe (Moscow, 1950); G.I. Barenblatt. Prikl. Mat. Mekh. 16, 67 (1952)Google Scholar
  27. 27.
    A.R. Kolovsky, E.A. Gomez, H.J. Korsch, Phys. Rev. A 81, 025603 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. Mulansky, A. Pikovsky, EPL 90, 10015 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    T.V. Laptyeva, J.D. Bodyfelt, S. Flach, Phys. D 256–257, 1 (2013)CrossRefGoogle Scholar
  30. 30.
    D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    I.L. Aleiner, B.L. Altshuler, G.V. Shlyapnikov, Nat. Phys. 6, 900 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Theoretical Physics of Complex SystemsInstitute for Basic ScienceDaejeonKorea
  2. 2.New Zealand Institute for Advanced Study, Centre for Theoretical Chemistry and PhysicsMassey UniversityAucklandNew Zealand

Personalised recommendations