International Workshop on Security and Trust Management

Security and Trust Management pp 20-36 | Cite as

Integrating Privacy and Safety Criteria into Planning Tasks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9331)

Abstract

In this paper we describe a new approach that uses multi-criteria decision making and the analytic hierarchy process (AHP) for integrating privacy and safety criteria into planning tasks. We apply the approach to the journey planning using two criteria: (i) a willingness-to-share-data (WSD) metric to control data disclosure, and (ii) the number of unsatisfied safety preferences (USP) metric to mitigate risky journeys.

Keywords

Personal safety Information privacy Multi-criteria decision making Analytic hierarchy process Smart city applications 

Notes

Acknowledgements

This work is supported by the 7th Framework EU-FET project ALLOW Ensembles (grant 600792).

References

  1. 1.
    André, P., et al.: Journey planning based on user needs. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, pp. 2025–2030. ACM (2007)Google Scholar
  2. 2.
    Andrikopoulos, V., et al.: A game theoretic approach for managing multi-modal urban mobility systems. In: Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics (AHFE 2014). CRC Press/Taylor & Francis, Kraków, Poland, July 2014Google Scholar
  3. 3.
    Andrikopoulos, V., Bucchiarone, A., Gómez Sáez, S., Karastoyanova, D., Mezzina, C.A.: Towards modeling and execution of collective adaptive systems. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 69–81. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Barker, T.J., Zabinsky, Z.B.: A multicriteria decision making model for reverse logistics using analytical hierarchy process. Omega 39(5), 558–573 (2011)CrossRefGoogle Scholar
  5. 5.
    Beirão, G., Cabral, J.S.: Understanding attitudes towards public transport and private car: a qualitative study. Transp. Policy 14(6), 478–489 (2007)CrossRefGoogle Scholar
  6. 6.
    Breaux, T.: Privacy requirements in an age of increased sharing. IEEE Softw. 31(5), 24–27 (2014)CrossRefGoogle Scholar
  7. 7.
    Calavia, L.: A semantic autonomous video surveillance system for dense camera networks in smart cities. Sens. 12(8), 10407–10429 (2012)CrossRefGoogle Scholar
  8. 8.
    Caragliu, A., et al.: Smart cities in europe. J. Urban Technol. 18(2), 65–82 (2011)CrossRefGoogle Scholar
  9. 9.
    De Cristofaro, E., Di Pietro, R.: Adversaries and countermeasures in privacy-enhanced urban sensing systems. IEEE Syst. J. 7(2), 311–322 (2013)CrossRefGoogle Scholar
  10. 10.
    Eboli, L., Mazzulla, G.: A methodology for evaluating transit service quality based on subjective and objective measures from the passengers point of view. Transp. Policy 18(1), 172–181 (2011)CrossRefGoogle Scholar
  11. 11.
    Ferraz, F.S., Ferraz, C.A.G.: Smart city security issues: depicting information security issues in the role of an urban environment. In: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp. 842–847. IEEE (2014)Google Scholar
  12. 12.
    Flammini, F., Gaglione, A., Mazzocca, N., Pragliola, C.: Quantitative Security risk assessment and management for railway transportation infrastructures. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 180–189. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Ho, W., et al.: Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202(1), 16–24 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kim, J., et al.: Hybrid choice models: principles and recent progress incorporating social influence and nonlinear utility functions. Procedia Environ. Sci. 22, 20–34 (2014)CrossRefGoogle Scholar
  15. 15.
    Koppelman, F.S.: Non-linear utility functions in models of travel choice behavior. Transp. 10(2), 127–146 (1981)CrossRefGoogle Scholar
  16. 16.
    Loukaitou-Sideris, A., Eck, J.E.: Crime prevention and active living. Am. J. Health Promot. 21(4s), 380–389 (2007)CrossRefGoogle Scholar
  17. 17.
    Lynch, G., Atkins, S.: The influence of personal security fears on women’s travel patterns. Transp. 15(3), 257–277 (1988)CrossRefGoogle Scholar
  18. 18.
    Mahmoud, M., Hine, J.: Using AHP to measure the perception gap between current and potential users of bus services. Transp. Plann. Technol. 36(1), 4–23 (2013)CrossRefGoogle Scholar
  19. 19.
    Martinez-Balleste, A., et al.: The pursuit of citizens’ privacy: a privacy-aware smart city is possible. IEEE Commun. Mag. 51(6), 136–141 (2013)CrossRefGoogle Scholar
  20. 20.
    Nam, T., Pardo, T.A.: Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, pp. 282–291. ACM (2011)Google Scholar
  21. 21.
    Patsakis, C., Solanas, A.: Privacy-aware event data recorders: cryptography meets the automotive industry again. IEEE Commun. Mag. 51(12), 122–128 (2013)CrossRefGoogle Scholar
  22. 22.
    Saaty, T.L.: What is the analytic hierarchy process? In: Mitra, G., Greenberg, H.J., Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J. (eds.) Mathematical Models for Decision Support. NATO ASI Series, vol. 48, pp. 109–121. Springer, Heidelberg (1988) CrossRefGoogle Scholar
  23. 23.
    Schaffers, H., et al.: Smart cities and the future internet: towards cooperation frameworks for open innovation. In: Domingue, J., et al. (eds.) FI. LNCS, vol. 6656, pp. 431–446. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  24. 24.
    Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anna Lavygina
    • 1
  • Alessandra Russo
    • 1
  • Naranker Dulay
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUK

Personalised recommendations