Skip to main content

Open-Loop Optimization Strategies for Additive Uncertainty

  • Chapter
  • First Online:
  • 9855 Accesses

Part of the book series: Advanced Textbooks in Control and Signal Processing ((C&SP))

Abstract

The essential components of the classical predictive control algorithms considered in Chap. 2 also underpin the design of algorithms for robust MPC. Guarantees of closed-loop properties such as stability and convergence rely on appropriately defined terminal control laws, terminal sets and cost functions. Likewise, to ensure that constraints can be met in the future, the initial plant state must belong to a suitable controllable set. However the design of these constituents and the analysis of their effects on the performance of MPC algorithms become more complex in the case where the system dynamics are subject to uncertainty. The main difficulty is that properties such as invariance, controlled invariance (including recursive feasibility) and monotonicity of the predicted cost must be guaranteed for all possible uncertainty realizations. In many cases this leads to computation which grows rapidly with the problem size and the prediction horizon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is a simplified version of the more general inclusion condition that is considered in [20]: \(\{\varPhi s_{i|k} + B c_{i|k}\} \oplus \varPhi _e\alpha _{i|k}\mathcal {S}^0\oplus D\mathcal {W}\subseteq \{s_{i+1|k}\} \oplus \alpha _{i+1|k}\mathcal {S}^0\).

References

  1. I. Kolmanovsky, E.G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems. Math. Probl. Eng. 4(4), 317–367 (1998)

    Article  MATH  Google Scholar 

  2. D.P. Bertsekas, I.B. Rhodes, On the minimax reachability of target sets and target tubes. Automatica 7, 233–247 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.P. Bertsekas, Dynamic Programming and Optimal Control (Academic Press, New York, 1976)

    MATH  Google Scholar 

  4. Y.I. Lee, B. Kouvaritakis, Constrained receding horizon predictive control for systems with disturbances. Int. J. Control 72(11), 1027–1032 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Schuurmans, J.A. Rossiter, Robust predictive control using tight sets of predicted states. Control Theory Appl. IEE Proc. 147(1), 13–18 (2000)

    Article  Google Scholar 

  6. D.Q. Mayne, M.M. Seron, S.V. Raković, Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2), 219–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. S.V. Rakovic, E.C. Kerrigan, K.I. Kouramas, D.Q. Mayne, Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Autom. Control 50(3), 406–410 (2005)

    Article  MathSciNet  Google Scholar 

  8. M. Vidyasagar, Nonlinear Systems Analysis, 2nd edn. (Prentice Hall, Upper Saddle River, 1993)

    MATH  Google Scholar 

  9. I. Yaesh, U. Shaked, Minimum \({\cal H}_\infty \)-norm regulation of linear discrete-time systems and its relation to linear quadratic discrete games. IEEE Trans. Autom. Control 35(9), 1061–1064 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Başar, A dynamic games approach to controller design: disturbance rejection in discrete-time. IEEE Trans. Autom. Control 36(8), 936–952 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944)

    MATH  Google Scholar 

  12. P.O.M. Scokaert, D.Q. Mayne, Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43(8), 1136–1142 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Tadmor, Receding horizon revisited: an easy way to robustly stabilize an LTV system. Syst. Control Lett. 18(4), 285–294 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Lall, K. Glover, A game theoretic approach to moving horizon control, in Advances in Model-Based Predictive Control, ed. by D.W. Clarke (Oxford University Press, Oxford, 1994), pp. 131–144

    Google Scholar 

  15. Y.I. Lee, B. Kouvaritakis, Receding horizon \({\cal H}_\infty \) predictive control for systems with input saturation. Control Theory Appl. IEE Proc. 147(2), 153–158 (2000)

    Article  Google Scholar 

  16. L. Magni, H. Nijmeijer, A.J. van der Schaft, A receding-horizon approach to the nonlinear \({\cal H}_\infty \) control problem. Automatica 37(3), 429–435 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.A. Stoorvogel, A.J.T.M. Weeren, The discrete-time Riccati equation related to the \(H_\infty \) control problem. IEEE Trans. Autom. Control 39(3), 686–691 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  19. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  20. S.V. Raković, B. Kouvaritakis, R. Findeisen, M. Cannon, Homothetic tube model predictive control. Automatica 48(8), 1631–1638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. S.V. Rakovic, B. Kouvaritakis, M. Cannon, Equi-normalization and exact scaling dynamics in homothetic tube MPC. Syst. Control Lett. 62(2), 209–217 (2013)

    Article  MATH  Google Scholar 

  22. J.R. Gossner, B. Kouvaritakis, J.A. Rossiter, Stable generalized predictive control with constraints and bounded disturbances. Automatica 33(4), 551–568 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.I. Lee, B. Kouvaritakis, Linear matrix inequalities and polyhedral invariant sets in constrained robust predictive control. Int. J. Robust Nonlinear Control 10(13), 1079–1090 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y.I. Lee, B. Kouvaritakis, A linear programming approach to constrained robust predictive control. IEEE Trans. Autom. Control 45(9), 1765–1770 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Blanchini, S. Miani, Set-Theoretic Methods in Control (Birkhäuser, Basel, 2008)

    MATH  Google Scholar 

  26. G. Bitsoris, On the positive invariance of polyhedral sets for discrete-time systems. Syst. Control Lett. 11(3), 243–248 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kouvaritakis .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kouvaritakis, B., Cannon, M. (2016). Open-Loop Optimization Strategies for Additive Uncertainty. In: Model Predictive Control. Advanced Textbooks in Control and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-24853-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24853-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24851-6

  • Online ISBN: 978-3-319-24853-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics