Skip to main content

Ensemble Selection Based on Discriminant Functions in Binary Classification Task

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2015 (IDEAL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9375))

Abstract

The paper describes the dynamic ensemble selection. The proposed algorithm uses values of the discriminant functions and it is dedicated to the binary classification task. The proposed algorithm of the ensemble selection uses decision profiles and the normalization of the discrimination functions is carried out. Additionally, the difference of the discriminant functions is used as one condition of selection. The reported results based on the ten data sets from the UCI repository show that the proposed dynamic ensemble selection is a promising method for the development of multiple classifiers systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Cavalin, P.R., Sabourin, R., Suen, C.Y.: Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22(3–4), 673–688 (2013)

    Article  Google Scholar 

  3. Britto, A.S., Sabourin, R., Oliveira, L.E.S.: Dynamic selection of classifiers a comprehensive review. Pattern Recognit. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  4. Burduk, R.: Classifier fusion with interval-valued weights. Pattern Recognit. Lett. 34(14), 1623–1629 (2013)

    Article  Google Scholar 

  5. Cyganek, B.: One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vis. 42(2–3), 103–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cyganek, B., Woźniak, M.: Vehicle logo recognition with an ensemble of classifiers. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 117–126. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Didaci, L., Giacinto, G., Roli, F., Marcialis, G.L.: A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognit. 38, 2188–2191 (2005)

    Article  MATH  Google Scholar 

  8. Forczmański, P., Łabȩdź, P.: Recognition of occluded faces based on multi-subspace classification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 148–157. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  10. Frejlichowski, D.: An algorithm for the automatic analysis of characters located on car license plates. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 774–781. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recognit. Lett. 22, 25–33 (2001)

    Article  MATH  Google Scholar 

  12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  13. Markatopoulou, F., Tsoumakas, G., Vlahavas, I.: Dynamic ensemble pruning based on multi-label classification. Neurocomputing 150, 501–512 (2015)

    Article  Google Scholar 

  14. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

    Article  Google Scholar 

  15. Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. Int. J. Neural Syst. 24(3), 1430007 (2014)

    Article  Google Scholar 

  16. Jackowski, K., Woźniak, M.: Method of classifier selection using the genetic approach. Expert Syst. 27(2), 114–128 (2010)

    Article  Google Scholar 

  17. Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)

    Article  Google Scholar 

  18. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)

    Article  Google Scholar 

  19. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  20. Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A 27(5), 553–568 (1997)

    Article  Google Scholar 

  21. Przewoźniczek, M., Walkowiak, K., Woźniak, M.: Optimizing distributed computing systems for k-nearest neighbours classifiers evolutionary approach. Log. J. IGPL 19(2), 357–372 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ranawana, R., Palade, V.: Multi-classifier systems: review and a roadmap for developers. Int. J. Hybrid Intell. Syst. 3(1), 35–61 (2006)

    Article  MATH  Google Scholar 

  23. Rejer, I.: Genetic algorithms in EEG feature selection for the classification of movements of the left and right hand. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 581–590. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fus. 6(1), 63–81 (2005)

    Article  MATH  Google Scholar 

  25. Smȩtek, M., Trawiński, B.: Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms. New Gener. Comput. 29(3), 309–327 (2011)

    Article  Google Scholar 

  26. Suen, C.Y., Legault, R., Nadal, C.P., Cheriet, M., Lam, L.: Building a new generation of handwriting recognition systems. Pattern Recognit. Lett. 14(4), 303–315 (1993)

    Article  Google Scholar 

  27. Trawiński, K., Cordon, O., Quirin, A.: A study on the use of multiobjective genetic algorithms for classifier selection in furia-based fuzzy multiclassifiers. Int. J. Comput. Intell. Syst. 5(2), 231–253 (2012)

    Article  Google Scholar 

  28. Ulas, A., Semerci, M., Yildiz, O.T., Alpaydin, E.: Incremental construction of classifier and discriminant ensembles. Inf. Sci. 179(9), 1298–1318 (2009)

    Article  Google Scholar 

  29. Woloszyński, T., Kurzyński, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognit. 44(10–11), 2656–2668 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Center under the grant no. DEC-2013/09/B/ST6/02264 and by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Burduk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Baczyńska, P., Burduk, R. (2015). Ensemble Selection Based on Discriminant Functions in Binary Classification Task. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24834-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24833-2

  • Online ISBN: 978-3-319-24834-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics