Skip to main content

Fusion of Self-Organizing Maps with Different Sizes

  • Conference paper
  • First Online:
  • 1482 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9375))

Abstract

An ensemble consists of several neural networks whose outputs are fused to produce a single output, which usually will be better than the individual results of each network. This work presents a methodology to aggregate the results of several Kohonen Self-Organizing Maps in an ensemble. Computational simulations demonstrate an increase in the accuracy classification and the proposed method effectiveness was evidenced by the Wilcoxon Signed Rank Test.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Perrone, M.P., Cooper, L.N.: When networks disagree: ensemble methods for hybrid neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image Processing, pp. 126–142. Chapman and Hall, New York (1993)

    Google Scholar 

  3. Kohonen, T.: Self-Organized Maps, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  4. Gonalves, M.L., De Andrade Netto, M.L., Costa, J.A.F., Zullo, J.: Data clustering using self-organizing maps segmented by mathematic morphology and simplified cluster validity indexes: an application in remotely sensed images. In: IJCNN 2006, International Joint Conference on Neural Networks, pp. 4421–4428 (2006)

    Google Scholar 

  5. Georgakis, A., Li, H., Gordan, M.: An ensemble of SOM networks for document organization and retrieval. In: International Conference on Adaptive Knowledge Representation and Reasoning (2005)

    Google Scholar 

  6. Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of Self Organizing Maps. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Corchado, E., Baruque, B.: WeVoS-ViSOM: an ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75, 171–184 (2012)

    Article  Google Scholar 

  8. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst. 21(04), 277–296 (2011)

    Article  Google Scholar 

  9. Jiang, Y., Zhi-Hua, Z.: SOM ensemble-based image segmentation. Neural Process. Lett. 20(3), 171–178 (2004)

    Article  Google Scholar 

  10. Low, K.H., Wee, K.L., Marcelo, H.A.: An ensemble of cooperative extended Kohonen maps for complex robot motion tasks. Neural Comput. 17, 1411–1445 (2005)

    Article  MATH  Google Scholar 

  11. DeLooze, L.L.: Attack characterization and intrusion detection using an ensemble of self-organizing maps. In: 2006 IEEE Information Assurance Workshop, pp. 108–115 (2006)

    Google Scholar 

  12. Fustes, D., Dafonte, C., Arcay, B., Manteiga, M., Smith, K., Vallenari, A., Luri, X.: SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey. Expert Syst. Appl. 40(5), 1530–1541 (2013)

    Article  Google Scholar 

  13. Tsai, C.-F.: Combining cluster analysis with classifier ensembles to predict financial distress. Inf. Fusion 16, 46–58 (2014)

    Article  Google Scholar 

  14. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bache, K., Lichman, M.: Machine Learning Repository. University of California, School of Information and Computer Sciences, Irvine (2013)

    Google Scholar 

  16. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings Workshop on Self-Organizing Maps (WSOM 2005), pp. 75–82 (2005)

    Google Scholar 

  17. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the support of CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF, Zip Code 70.040-020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Antonio Pasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pasa, L.A., Costa, J.A.F., de Medeiros, M.G. (2015). Fusion of Self-Organizing Maps with Different Sizes. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2015. IDEAL 2015. Lecture Notes in Computer Science(), vol 9375. Springer, Cham. https://doi.org/10.1007/978-3-319-24834-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24834-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24833-2

  • Online ISBN: 978-3-319-24834-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics