Advertisement

Cacao Diseases pp 267-303 | Cite as

Phytophthora megakarya, a Causal Agent of Black Pod Rot in Africa

  • Bryan A. Bailey
  • Shahin S. Ali
  • Andrews Y. Akrofi
  • Lyndel W. Meinhardt
Chapter

Abstract

In most parts of the world where Theobroma cacao is grown, Phytophthora palmivora is the major concern for causing black pod rot (BPR). Phytophthora megakarya, on the other hand, occurs only in Africa, but represents a major threat to cacao production, the countries of West Africa being the largest producers of cacao in the world. Since cacao did not originate in Africa, P. megakarya obviously only recently (likely prior to 1960) added cacao as a host and this new encounter has resulted in the most severe form of BPR worldwide. Although P. megakarya and P. palmivora are related, both being grouped in clade 4 in current Phytophthora diversity studies, P. megakarya has a distinct chromosomal composition and adaptations that make it particularly aggressive on cacao. P. megakarya has environmental requirements (temperature and rainfall) similar to cacao, and its ability to survive in soil and reinfect cacao pods through inoculum originating in the soil makes it particularly difficult to manage. Not only does P. megakarya survive in the soil for long periods, it also survives on the roots of cacao and other plant/tree species, many of which are cocultivated with cacao. Scientists have continued to make progress in understanding P. megakarya as a pathogen and have developed management tools for the disease it causes. Unfortunately, management tools such as fungicides and labor-intensive sanitation efforts, although effective, can be costly and, in some cases, difficult to obtain/maintain. As a result, farmers have difficulty justifying their use. Efforts toward breeding for tolerance in the crop to P. megakarya-induced BPR are making progress and in the future new planting materials should be able to greatly reduce disease losses if deployed with sound disease management practices. An improved understanding of the pathogen and its interaction with cacao at all levels, especially the molecular level, the deployment of tolerant cacao planting materials, the standardization of screening tools for developing tolerance to disease and determining pathogen diversity, and the refinement and more consistent employment by farmers of management tools already available will be critical for limiting losses due to P. megakarya-induced black pod rot in the future. The containment of P. megakarya to areas where it already exists is critical to cacao production around the world.

Keywords

Arbuscular Mycorrhizal Fungus Penetration Resistance Phytophthora Species Compatibility Type Zoospore Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work was funded by USDA ARS. References to a company and/or product by the USDA are only for the purposes of information and do not imply approval or recommendation of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

References

  1. Addo-Fordjour, P., Gyimah Gyamfi, H., Fei-Baffoe, B., & Akrofi, A. Y. (2013). Impact of copper-based fungicide application on copper contamination of cocoa plants and soils in the Ahafo Ano North District, Ashanti region, Ghana. Ecology, Environment and Conservation, 19(2), 303–310.Google Scholar
  2. Aikpokpodion, P., Lajide, L., & Aiyesanmi, A. (2010). Heavy metals contamination in fungicide treated cocoa plantations in Cross River state, Nigeria. American-Eurasian Journal of Agricultural and Environmental Sciences, 8, 268–274.Google Scholar
  3. Akrofi, A. (2015). Phytophthora megakarya: A review on its status as a pathogen on cacao in West Africa. African Crop Science Journal, 23(1), 67–87.Google Scholar
  4. Akrofi, A. Y., Amoako-Atta, I., Assuah, M., & Asare, E. K. (2015). Black pod disease on cacao (Theobroma cacao, L) in Ghana: Spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Protection, 72, 66–75.CrossRefGoogle Scholar
  5. Akrofi, A. Y., Govers, F., Awuah, R. T., & Raaijmakers, J. M. (2012). Exploiting microbial diversity in cocoa ecosystems in Ghana to control Phytophthora pod rot disease. Global Advanced Research Journal of Agricultural Science, 1(10), 305–308.Google Scholar
  6. Akrofi, A., & Opoku, I. (2003). Phytophthora invasion of cocoa pod and bean. Journal of the Ghana Science Association, 5(1), 8–14.Google Scholar
  7. Ali, S. S., Amoako-Attah, I., Bailey, R. A., Strem, M. D., Schmidt, M., Akrofi, A. Y., Surujdeo-Maharaj, S., Kolawole, O. O., Begoude, B. A. D., ten Hoopen, G. M., Goss, E., Phillips-Mora, W., Meinhardt, L. W., & Bailey, B. A. (2016). PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya’s field dominance in West Africa. Plant Pathology (In press).Google Scholar
  8. Appiah, A., Flood, J., Archer, S., & Bridge, P. (2004a). Molecular analysis of the major Phytophthora species on cocoa. Plant Pathology, 53(2), 209–219.CrossRefGoogle Scholar
  9. Appiah, A., Flood, J., Bridge, P., & Archer, S. (2003). Inter‐and intraspecific morphometric variation and characterization of Phytophthora isolates from cocoa. Plant Pathology, 52(2), 168–180.CrossRefGoogle Scholar
  10. Appiah, A. A., Opoku, I. Y., & Akrofi, A. Y. (2004b). Natural occurrence and distribution of stem cankers caused by Phytophthora megakarya and Phytophthora palmivora on cocoa. European Journal of Plant Pathology, 110(10), 983–990.CrossRefGoogle Scholar
  11. Argout, X., Fouet, O., Wincker, P., Gramacho, K., Legavre, T., Sabau, X., Risterucci, A. M., Da Silva, C., Cascardo, J., & Allegre, M. (2008). Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC genomics, 9, 512.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95(3), 388–398.CrossRefPubMedGoogle Scholar
  13. Asare-Nyako, A. & Bruce, R. (1982–1985). Cocoa Research Institute of Ghana Annual Report. In Report of the Cocoa Research Institute of Ghana, 1982/83-1984/85Tafo, Ghana.Google Scholar
  14. Awuah, R., & Frimpong, M. (2007). Investigation into the seed-borne nature and seed to seedling transmission of Phytophthora in cocoa. Journal of Science and Technology (Ghana), 27(1), 9–16.CrossRefGoogle Scholar
  15. Bae, H., Bowers, J. H., Tooley, P. W., & Bailey, B. A. (2005). NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. Mycological Research, 109(12), 1373–1385.CrossRefPubMedGoogle Scholar
  16. Bailey, B. A., Bae, H., Strem, M. D., de Mayolo, G. A., Guiltinan, M. J., Verica, J. A., Maximova, S. N., & Bowers, J. H. (2005). Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiology and Biochemistry, 43(6), 611–622.CrossRefPubMedGoogle Scholar
  17. Bernhardt, E., & Grogan, R. (1982). Effect of soil matric potential on the formation and indirect germination of sporangia of Phytophthora parasitica, Phytophthora capsici, and Phytophthora cryptogea [Rots of tomatoes, Lycopersicon esculentum]. Phytopathology (USA), 72(5), 507–511.CrossRefGoogle Scholar
  18. Boccas, B. (1981). Interspecific crosses between closely related heterothallic Phytophthora species. Phytopathology, 71(1), 60–65.CrossRefGoogle Scholar
  19. Boudjeko, T., Djocgoue, P., Nankeu, J., Mbouobda, H., Omokolo, D., & El Hadrami, I. (2007). Luteolin derivatives and heritability of resistance to Phytophthora megakarya in Theobroma cacao. Australasian Plant Pathology, 36(1), 56–61.CrossRefGoogle Scholar
  20. Brasier, C. (1969). Formation of oospores in vivo by Phytophthora palmivora. Transactions of the British Mycological Society, 52(2), 273–279.CrossRefGoogle Scholar
  21. Brasier, C., & Griffin, M. (1979). Taxonomy of ‘Phytophthora palmivora’ on cocoa. Transactions of the British Mycological Society, 72(1), 111–143.CrossRefGoogle Scholar
  22. Brasier, C., Griffin, M. & Maddison, A. (1981).The Cocoa black pod Phytophthoras. In P. Gregory & A. Maddison (Eds.), Epidemiology of Phytophthora on cocoa in Nigeria. Final report of the International Cocoa Black Pod Research Project, Vol. Phytopathological paper 25, 18–30. Kew Surrey, England: Commonwealth Mycological Institute.Google Scholar
  23. Chee, K. (1973). Production, germination and survival of chlamydospores of Phytophthora palmivora from Hevea brasiliensis. Transactions of the British Mycological Society, 61(1), 21–26.CrossRefGoogle Scholar
  24. Cheesman, E. (1927). Fertilization and Embryogeny in Theobroma cacao, L. Annals of Botany, 1, 107–126.Google Scholar
  25. Cilas, C. (2006). Comparison of resistance to Phytophthora pod rot in a ring test using leaf disc inoculation at ten sites. Global Approaches to Cocoa Germplasm Utilization and Conservation, pp. 116–123Google Scholar
  26. Cooke, D., Drenth, A., Duncan, J., Wagels, G., & Brasier, C. (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology, 30(1), 17–32.CrossRefPubMedGoogle Scholar
  27. CRIG (1979–1994).Cocoa Research Institute of Ghana annual reports. In Report of the Cocoa Research Institute of Ghana, 1979-1994 Tafo, Ghana.Google Scholar
  28. CRIG (1990–1991). Cocoa Research Institute of Ghana Annual Report. In Report of the Cocoa Research Institute of Ghana, 1990/91, 59-85 Tafo, Ghana: Cocoa Research Institute.Google Scholar
  29. Cunningham, R., & Arnold, P. (1962). The shade and fertiliser requirements of cacao (Theobroma cacao) in Ghana. Journal of the Science of Food and Agriculture, 13(4), 213–221.CrossRefGoogle Scholar
  30. Dakwa, J. (1974). The occurrence of Phytophthora palmivora (Butl) Butl in soil in Ghana. Ghana Journal of Agricultural Science, 7, 37–41.Google Scholar
  31. Dakwa, J. (1979–1982). Cocoa Research Institute of Ghana Annual Report. In Report of the Cocoa Research Institute of Ghana, 1979/80-1981-82, 165–167, Tafo, Ghana.Google Scholar
  32. Dakwa, J. (1984).Nationwide black pod survey. Joint CRIG/Cocoa Production Division Project. In Annual Report of the Cocoa Research Institute, Ghana, 1976/77–1978/79, p. 263 Tafo (Akim Abuakwa), Ghana: Cocoa Research Institute.Google Scholar
  33. Dakwa, J. (1987).A serious outbreak of black pod disease in a marginal area of Ghana. In Proceedings of the 10th International Cocoa Research Conference, pp. 447–451.Google Scholar
  34. Dakwa, J. (1988).Changes in the periods for attaining the cocoa black pod disease infection peaks in Ghana. In Proceedings of the 10th International Cocoa Research Conference, Santo Domingo, Dominican Republic, pp. 427–436.Google Scholar
  35. deAlmeida, A., & Valle, R. (2007). Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(4), 425–448.CrossRefGoogle Scholar
  36. Deberdt, P., Mfegue, C., Tondje, P., Bon, M., Ducamp, M., Hurard, C., Begoude, B., Ndoumbe-Nkeng, M., Hebbar, P., & Cilas, C. (2008). Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control, 44(2), 149–159.CrossRefGoogle Scholar
  37. Dennis, J. & Konam, J. (1993).Phytophthora palmivora cultural control methods and their relationship to disease epidemiology on cocoa in Papua New Guinea. In Proceedings of the 11th international cocoa research conference, pp. 18–24.Google Scholar
  38. Dick, M. (2001). Straminipilous fungi: Systematics of the peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms, pp. 1–660.Google Scholar
  39. Djiekpor, E., Goka, K., Lucas, P., & Partiot, M. (1981). Cocoa black pod rot caused by Phytophthora sp. in Togo: Assessment and control strategies. Cafe Cacao The, 25(4), 263–268.Google Scholar
  40. Djiekpor, E., Partiot, M. & Lucas, P. (1982). Cacao black pod caused by Phytophthora sp. in Togo: Determination of causal species. In Proceedings 8th International Cocoa Research Conference, Cartagena, Colombia, 18 23 Oct 1981, pp. 473–478. Cocoa Producers’ Alliance.Google Scholar
  41. Djocgoue, P., Boudjeko, T., Mbouobda, H., Nankeu, D., El Hadrami, I., & Omokolo, N. (2007). Heritability of phenols in the resistance of Theobroma cacao against Phytophthora megakarya, the causal agent of black pod disease. Journal of Phytopathology, 155(9), 519–525.CrossRefGoogle Scholar
  42. Djocgoue, P. F., Mbouobda, H. D., Boudjeko, T., Effa, P. O., & Omokolo, D. N. (2012). Amino acids, carbohydrates and heritability of resistance in Theobroma cacao/Phythophtora megakarya interaction. Phytopathologia Mediterranea, 50(3), 370–383.Google Scholar
  43. Drenth, A. & Sendall, B. (2001). Practical guide to Detection and identification of Phytophthora. 1.0, pp. 1–41.Google Scholar
  44. Efombagn, M., Marelli, J., Ducamp, M., Cilas, C., Nyasse, S., & Vefonge, D. (2004). Effect of fruiting traits on the field resistance of cocoa (Theobroma cacao L.) clones to Phytophthora megakarya. Journal of Phytopathology, 152(10), 557–562.CrossRefGoogle Scholar
  45. Erselius, L. J., & Shaw, D. (1982). Protein and enzyme differences between Phytophthora palmivora and P. megakarya: Evidence for self-fertilization in pairings of the two species. Transactions of the British Mycological Society, 78(2), 227–238.CrossRefGoogle Scholar
  46. Evans, H. (1971). Transmission of Phytophthora pod rot of cocoa by invertebrates. Nature, 232, 346–347.CrossRefPubMedGoogle Scholar
  47. Ferguson, A., & Jeffers, S. (1999). Detecting multiple species of Phytophthora in container mixes from ornamental crop nurseries. Plant Disease, 83(12), 1129–1136.CrossRefGoogle Scholar
  48. Ferrin, D. M., & Mellinger, H. C. (1977). Control of Phytophthora wilt of azaleas with CGA 48988. Proceedings of the Florida State Horticultural Society, 90, 333–336.Google Scholar
  49. Fo, H., Oudemans, P., & Coffey, M. D. (1990). Mitochondrial and nuclear DNA diversity within six species of Phytophthora. Experimental Mycology, 14(1), 18–31.CrossRefGoogle Scholar
  50. Gisi, U., Zentmyer, G., & Klure, L. (1980). Production of sporangia by Phytophthora cinnamomi and P. palmivora in soils at different matric potentials. Phytopathology, 70(4), 301–306.CrossRefGoogle Scholar
  51. Gregory, P., Griffin, M., Maddison, A., & Ward, M. (1984). Cocoa black pod: A reinterpretation. Cocoa Growers’ Bulletin, 35, 5–22.Google Scholar
  52. Gregory, P. H., & Maddison, A. (1981). Epidemiology of Phytophthora on cocoa in Nigeria. Phytopathological Paper, 25, 23–26.Google Scholar
  53. Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K., & Sogin, M. L. (1987). Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proceedings of the National Academy of Sciences, 84(16), 5823–5827.CrossRefGoogle Scholar
  54. Hislop, E. (1963). Studies on the chemical control of Phytophthora palmivora (Butl.) Butl. on Theobroma cacao L. in Nigeria. Annals of Applied Biology, 52(3), 465–480.CrossRefGoogle Scholar
  55. Hislop, E., & Park, P. (1962). Studies on the chemical control of Phytophthora palmivora (Butl.) Butl. on Theobroma cacao L. in Nigeria. Annals of Applied Biology, 50(1), 77–88.CrossRefGoogle Scholar
  56. Holmes, K., Evans, H., Wayne, S., & Smith, J. (2003). Irvingia, a forest host of the cocoa black‐pod pathogen, Phytophthora megakarya, in Cameroon. Plant Pathology, 52(4), 486–490.CrossRefGoogle Scholar
  57. Ivors, K., Garbelotto, M., Vries, I., Ruyter-Spira, C., Hekkert, B., Rosenzweig, N., & Bonants, P. (2006). Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology, 15(6), 1493–1505.CrossRefPubMedGoogle Scholar
  58. Iwaro, A., Sreenivasan, T., & Umaharan, P. (1997a). Foliar resistance to Phytophthora palmivora as an indicator of pod resistance in Theobroma cacao. Plant Disease, 81(6), 619–624.CrossRefGoogle Scholar
  59. Iwaro, A., Sreenivasan, T., & Umaharan, P. (1997b). Phytophthora resistance in cacao (Theobroma cacao): Influence of pod morphological characteristics. Plant Pathology, 46(4), 557–565.CrossRefGoogle Scholar
  60. Iwaro, A., Sreenivasan, T., & Umaharan, P. (1998). Cacao resistance to Phytophthora: Effect of pathogen species, inoculation depths and pod maturity. European Journal of Plant Pathology, 104(1), 11–15.CrossRefGoogle Scholar
  61. Kaosiri, T., & Zentmyer, G. A. (1980). Protein, esterase, and peroxidase patterns in the Phytophthora palmivora complex from cacao. Mycologia, 72, 988–1000.CrossRefGoogle Scholar
  62. Koné, Y. (1999).Etude de la structure actuelle des populations de Phytophthora spp., agents de la pourriture brune des cabosses du cacaoyer (Theobroma cacao L.) en Côte d’Ivoire. In DAA Thesis, Ecole Supérieure d’Agronomie, 111 Yamoussoukro, Côte d’Ivoire.Google Scholar
  63. Kong, P., Hong, C., Richardson, P. A., & Gallegly, M. E. (2003). Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genetics and Biology, 39(3), 238–249.CrossRefPubMedGoogle Scholar
  64. Kroon, L., Bakker, F., Van Den Bosch, G., Bonants, P., & Flier, W. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41(8), 766–782.CrossRefPubMedGoogle Scholar
  65. Kumi, M., Wolffhechel, H., Hansen, H., & Mathur, S. (1996). Seed transmission of Phytophthora in cacao. Seed Science and Technology, 24(3), 593–595.Google Scholar
  66. Lanaud, C., Fouet, O., Clément, D., Boccara, M., Risterucci, A., Surujdeo-Maharaj, S., Legavre, T., & Argout, X. (2009). A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Molecular Breeding, 24(4), 361–374.CrossRefGoogle Scholar
  67. Lee, S. B., & Taylor, J. W. (1992). Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Molecular Biology and Evolution, 9(4), 636–653.PubMedGoogle Scholar
  68. Louise, N. W., Séverin, T. N., Raymond, F., Xavier, E. F., & Martine, D. (2011). Flavonoïd compounds synthesis by cocoa fruits (Theobroma cacao L.) in response to Phytophthora megakarya infection. Research Journal of Agriculture and Biological Sciences, 7(3), 335–342.Google Scholar
  69. Luterbacher, M. C. & Akrofi, A. Y. (1994). The current status and distribution of Phytophthora megakarya in Ghana. In Proceedings of the XIth International Cocoa Research Conference, 29–35 Yamoussoukro, Côte d’Ivoire: Cocoa Producers Alliance, Lagos, Nigeria.Google Scholar
  70. Maddison, A. & Griffin, M. (1981). Detection and movement of inoculum. Phytopathological Papers: 31–49.Google Scholar
  71. Martin, F. N., & Tooley, P. W. (2004). Identification of Phytophthora isolates to species level using restriction fragment length polymorphism analysis of a polymerase chain reaction-amplified region of mitochondrial DNA. Phytopathology, 94(9), 983–991.CrossRefPubMedGoogle Scholar
  72. McGregor, A. (1984). Comparison of cuprous oxide and metalaxyl with mixtures of these fungicides for the control of Phytophthora pod rot of cocoa. Plant Pathology, 33(1), 81–87.CrossRefGoogle Scholar
  73. McMahon, P. & Purwantara, A. (2004). 6.1 Phytophthora on cocoa. Diversity and Management of Phytophthora in Southeast Asia: 104–114.Google Scholar
  74. Mfegue, C., Herail, C., Adreit, H., Mbenoun, M., Techou, Z., Ten Hoopen, M., Tharreau, D., & Ducamp, M. (2012). Microsatellite markers for population studies of Phytophthora megakarya (Pythiaceae), a cacao pathogen in Africa. American Journal of Botany, 99(9), e353–e356.CrossRefPubMedGoogle Scholar
  75. Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One, 3(10), e3311.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Naganeeswaran, S. A., Subbian, E. A., & Ramaswamy, M. (2012). Analysis of expressed sequence tags (ESTs) from cocoa (Theobroma cacao L) upon infection with Phytophthora megakarya. Bioinformation, 8(2), 65–69.PubMedCentralCrossRefPubMedGoogle Scholar
  77. Ndoumbe-Nkeng, M., Cilas, C., Nyemb, E., Nyasse, S., Bieysse, D., Flori, A., & Sache, I. (2004). Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Protection, 23(5), 415–424.CrossRefGoogle Scholar
  78. Ndoumbe-Nkeng, M., Efombagn, M., Nyasse, S., Nyemb, E., Sache, I., & Cilas, C. (2009). Relationships between cocoa Phytophthora pod rot disease and climatic variables in Cameroon. Canadian Journal of Plant Pathology, 31(3), 309–320.CrossRefGoogle Scholar
  79. Ndoumou, D. O., Djocgoue, P., Nana, L., & Debost, M. (1995). Variation and inheritance of peroxidase activity and phenol and saccharide content in cacao in relation to susceptibility to black pod disease. Biologia Plantarum, 37(3), 429–436.CrossRefGoogle Scholar
  80. Ndoumou, O. D., Ndzomo, T. G., & Djocgoue, P. (1996). Changes in carbohydrate, amino acid and phenol contents in cocoa pods from three clones after infection with Phytophthora megakarya Bra. and Grif.. Annals of Botany, 77(2), 153–158.CrossRefGoogle Scholar
  81. Nichols, R. (1961). Xylem occlusions in the fruit of cacao (Theobroma cacao) and their relation to cherelle wilt. Annals of Botany, 25(100), 463–475.Google Scholar
  82. Nichols, R. (1964). Studies of fruit development of cacao (Theobroma cacao) in relation to cherelle wilt I. development of the pericarp. Annals of Botany, 28(4), 619–635.Google Scholar
  83. Nwaga, D., Normand, M. I., & Citharel, J. (1990). Identification and differentiation of Phytophthora by electrophoresis of mycelial proteins and isoenzymes. EPPO Bulletin, 20(1), 35–45.CrossRefGoogle Scholar
  84. Nyadanu, D., Akromah, R., Adomako, B., Kwoseh, C., Lowor, S., Dzahini-Obiatey, H., Akrofi, A., Owusu Ansah, F., & Assuah, M. (2012). Histological mechanisms of resistance to black pod disease in cacao (Theobroma cacao L.). Journal of Plant Sciences, 7, 1–16.CrossRefGoogle Scholar
  85. Nyasse, S., Grivet, L., Risterucci, A., Blaha, G., Berry, D., Lanaud, C., & Despreaux, D. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research, 103(10), 1225–1234.CrossRefGoogle Scholar
  86. Omokolo, N., Nankeu, D., Niemenak, N., & Boudjeko, T. (2003).Variation of b-1,3-glucanase, chitinase and polyphenoloxidase activities in cacao pods upon Phytophthora megakarya inoculation. In African Crop Science Journal, Vol. 11: African Crop Science Society.Google Scholar
  87. Ondobo, M. L., Onomo, P. E., Djocgoue, P. F., Ndjaga, J. M., Boudjeko, T., & Ndoumou, D. O. (2014). Phenolic content and heritability of resistance in four hybrid populations of Theobroma cacao L. after leaves inoculation with Phytophthora megakarya Bras. et Grif.. International Journal of Biological and Chemical Sciences, 8(1), 17–30.CrossRefGoogle Scholar
  88. Oome, S., Raaymakers, T. M., Cabral, A., Samwel, S., Böhm, H., Albert, I., Nürnberger, T., & Van den Ackerveken, G. (2014). Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proceedings of the National Academy of Sciences, 111(47), 16955–16960.CrossRefGoogle Scholar
  89. Opoku, I., Akrofi, A., & Appiah, A. (2002). Shade trees are alternative hosts of the cocoa pathogen Phytophthora megakarya. Crop Protection, 21(8), 629–634.CrossRefGoogle Scholar
  90. Opoku, I., Appiah, A., Akrofi, A., & Owusu, G. (2000). Phytophthora megakarya: A potential threat to the cocoa industry in Ghana. Ghana Journal of Agricultural Science, 33(2), 237–248.CrossRefGoogle Scholar
  91. Opoku, I., Assuah, M., & Aneani, F. (2007). Management of black pod disease of cocoa with reduced number of fungicide application and crop sanitation. African Journal of Agricultural Research, 2(11), 601–604.Google Scholar
  92. Panabieres, F., Marais, A., Trentin, F., Bonnet, P., & Ricci, P. (1989). Repetitive DNA polymorphism analysis as a tool for identifying Phytophthora species. Phytopathology, 79(10), 1105–1109.CrossRefGoogle Scholar
  93. Pokou, N., N’Goran, J., Eskes, A., & Sangaré, A. (2009). Cocoa farm survey in Côte d’Ivoire. In International Workshop on Cocoa Breeding for Farmers’ Needs, p. 26.Google Scholar
  94. Sanogo, S., & Ji, P. (2013). Water management in relation to control of Phytophthora capsici in vegetable crops. Agricultural Water Management, 129, 113–119.CrossRefGoogle Scholar
  95. Sansome, E., Brasier, C., & Griffin, M. (1975). Chromosome size differences in Phytophthora palmivora, a pathogen of cocoa. Nature, 255, 704–705.CrossRefPubMedGoogle Scholar
  96. Sansome, E., Brasier, C., & Sansome, F. (1979). Further cytological studies on the ‘L’ and ‘S’ types of Phytophthora from cocoa. Transactions of the British Mycological Society, 73(2), 293–302.CrossRefGoogle Scholar
  97. Sanusi, R. & Oloyede, A. (2007). Shade management on cocoa farm in Nigeria: effect on pod production on on-station’s plots. In 8th African Crop Science Society Conference, Vol. 8, 1983-1986 El-Minia, Egypt, 27–31 October 2007: African Crop Science Society.Google Scholar
  98. Simo, C. D., Mboubda, P. F., Effa, H. D., Boudjeko, P. O., Ndiang, T. Z., & Omokolo, D. N. (2014). Assessing relationship between phenolic compounds and resistance to Phytophthora megakarya using two cocoa (Theobroma cacao) families. African Journal of Biotechnology, 13(29), 2956–2965.CrossRefGoogle Scholar
  99. Soberanis, W., Rıos, R., Arévalo, E., Zuniga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18(10), 677–685.CrossRefGoogle Scholar
  100. Soh, P. T., Ndoumbè-Nkeng, M., Sache, I., Nguema, E. N., Gwet, H., & Chadœuf, J. (2013). Development stage-dependent susceptibility of cocoa fruit to pod rot caused by Phytophthora megakarya. European Journal of Plant Pathology, 135(2), 363–370.CrossRefGoogle Scholar
  101. Sonwa, D. J., Coulibaly, O., Weise, S. F., Adesina, A. A., & Janssens, M. J. (2008). Management of cocoa: Constraints during acquisition and application of pesticides in the humid forest zones of southern Cameroon. Crop Protection, 27(8), 1159–1164.CrossRefGoogle Scholar
  102. Stassen, J. H., & Van den Ackerveken, G. (2011). How do oomycete effectors interfere with plant life? Current Opinion in Plant Biology, 14(4), 407–414.CrossRefPubMedGoogle Scholar
  103. Tchameni, S. N., Nwaga, D., Wakam, L. N., Ngonkeu, M., Leonard, E., Fokom, R., Kuaté, J., & Etoa, F. X. (2012). Growth enhancement, amino acid synthesis and reduction in susceptibility towards Phytophthora megakarya by arbuscular mycorrhizal fungi inoculation in cocoa plants. Journal of Phytopathology, 160(5), 220–228.CrossRefGoogle Scholar
  104. Ten Hoopen, G. M., Sounigo, O., Babin, R., Yede, Dikwe, G. & Cilas, C. (2011). Spatial and temporal analysis of a Phytophthora megakarya epidemic in a plantation in the centre region of Cameroon. In Proceedings of the 16th International Cocoa Research Conference, 16–21st November, 2009, pp. 683–687, Bali, Indonesia.Google Scholar
  105. Thines, M. (2014). Phylogeny and evolution of plant pathogenic oomycetes—A global overview. European Journal of Plant Pathology, 138(3), 431–447.CrossRefGoogle Scholar
  106. Thorold, C. (1959). Methods of controlling black pod disease (caused by Phytophthora palmivora) of Theobroma cacao in Nigeria. Annals of Applied Biology, 47(4), 708–715.CrossRefGoogle Scholar
  107. Turner, P. (1960). Strains of Phytophthora palmivora (Butl.) Butl. From Theobroma cacao L.: I. isolates from West Africa. Transactions of the British Mycological Society, 43(4), 665–667.CrossRefGoogle Scholar
  108. Turner, P., & Asomaning, E. (1962). Root infection of Theobroma cacao by Phytophthora palmivora. Tropological Agriculture (Trinidad), 39, 339–343.Google Scholar
  109. Urech, P., Schwinn, F. & Staub, T. (1977).CGA 48988 a novel fungicide for the control of late blight, downy mildews and related soil borne diseases. In Proceedings of the British Crop Protection Conference, Pests and Diseases, Vol. 1977, pp. 623–632.Google Scholar
  110. Ward, M., & Griffin, M. (1981). Soil phase of cocoa Phytophthora. In P. H. Gregory & A. C. Maddison (Eds.), Epidemiology of Phytophthora on cocoa in Nigeria (Vol. 25, pp. 50–61). Kew: Commonwealth Mycological Institute.Google Scholar
  111. West, J. (1936). Black pod of cocoa. Experimental control on native farms. In 11th Bulletin of Agricultural Department Nigeria, Vol. 11, pp. 1–11.Google Scholar
  112. Wharton, A. L. (1958). Strains of Phytophthora palmivora occurring in Ghana and Nigeria. Report West African Cocoa research Institute, 1956–1957.Google Scholar
  113. Widmer, T. L. (2014). Phytophthora palmivora. Forest Phytophthoras, 4(1), 3557.CrossRefGoogle Scholar
  114. Widmer, T. L. & Hebbar, P. K. (2013). Phytophthora megakarya. In Forest Phytophthoras, Vol. 3, p. 3386. Oregon State University.Google Scholar
  115. Widmer, T. L., & Laurent, N. (2006). Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. European Journal of Plant Pathology, 115(4), 377–388.CrossRefGoogle Scholar
  116. Yuen, J., & Andersson, B. (2013). What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathology, 62(3), 485–491.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bryan A. Bailey
    • 1
  • Shahin S. Ali
    • 1
  • Andrews Y. Akrofi
    • 2
  • Lyndel W. Meinhardt
    • 1
  1. 1.Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleUSA
  2. 2.Cocoa Research Institute of GhanaAkim TafoGhana

Personalised recommendations