The Impact of Diseases on Cacao Production: A Global Overview

  • Randy PloetzEmail author


Cacao (Theobroma cacao), one of the most important tropical crops, is responsible for a multibillion-dollar confectionary trade. It originated in the neotropics, but most production now occurs outside its native range. Diseases are significant constraints in commercial production and reduce yields by a conservative total of 20 %, or a projected 1.3 million tons of beans in 2012. As it was moved outside the neotropics, cacao was released from its two primary American enemies, Moniliophthora roreri (cause of frosty pod) and M. perniciosa (witches’ broom). The diseases they cause would devastate production in West Africa and Asia if they were reunited with their cacao host. Diverse pathogens impact production in other areas. Newly encountered pathogens in West Africa (Cacao swollen shoot virus and Phytophthora megakarya) and Asia [Ceratobasidium (aka Oncobasidium) theobromae] are serious problems in those areas, as are other fungi and stramenopiles with wider geographic distributions. The ranges of the major pathogens and the impacts and losses that result from the diseases they cause are considered below. The potential impacts of the geographically restricted problems are assessed to evaluate the vulnerability of this crop. In a worst-case scenario, global production would be impossible in the presence of all of the major pathogens.


Cocoa Butter Theobroma Cacao Enemy Release Phytophthora Palmivora Cacao Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Emmanuelle Muller for information on the distribution of Cacao swollen shoot virus; David Guest, Phillip Keane, and Peter McMahon on the distribution of Ceratobasidium theobromae; Harry Evans, Wilberth Phillips-Mora, and Carmen Suarez-Capello on the distributions of Moniliophthora perniciosa and M. roreri; and Andrews Akofri on the distribution of Phytophthora megakarya.


  1. Aime, M. C., & Phillips-Mora, W. (2005). The causal agent of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia, 97, 1012–1022.CrossRefPubMedGoogle Scholar
  2. Akrofi, A. Y., Amoako-Atta, I., Assuah, M., & Asare, E. K. (2015). Black pod disease on cacao (Theobroma cacao L.) in Ghana: Spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Protection, 72, 66–75.CrossRefGoogle Scholar
  3. Ameyaw, G. A., Dzahini-Obiatey, H. K., & Domfeh, O. (2014). Perspectives on cocoa swollen shoot virus disease (CSSVD) management in Ghana. Crop Protection, 65, 64–70.CrossRefGoogle Scholar
  4. Appiah, A. A., Opoku, I. Y., & Akrofi, A. Y. (2004). Natural occurrence and distribution of stem cankers caused by Phytophthora megakarya and Phytophthora palmivora on cocoa. European Journal of Plant Pathology, 110, 983–990.CrossRefGoogle Scholar
  5. Bald, J. G., & Tinsley, T. W. (1970). A quasi-genetic model for plant viruses host ranges. IV. Cacao swollen shoot and mottle leaf viruses. Virology, 40, 369–378.CrossRefPubMedGoogle Scholar
  6. Barreto, R. W., & Evans, H. C. (1997). Role of fungal biocontrol of weeds in ecosystem sustainability. In M. Palm & I. Chapela (Eds.), Mycology in sustainable development (pp. 181–210). Boone: Parkway Publ. Inc.Google Scholar
  7. Bartley, B. G. D. (2005). The genetic diversity of cacao and its utilization. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  8. Bastos, C. N., & Evans, H. C. (1978). Ocorrencia de Ceratocystis fimbriata Ell. & Halst. na Amazonia brasileira. Acta Amazonica, 8, 543–544.Google Scholar
  9. Bateman, R. P., Hidalgo, E., Garcia, J., Arroyo, C., ten Hoopen, G. M., Adonijah, V., et al. (2005). Application of chemical and biological agents for the management of frosty pod rot (Moniliophthora roreri) in Costa Rican cocoa (Theobroma cacao). Annals of Applied Biology, 147, 129–138.CrossRefGoogle Scholar
  10. Bowers, J. H., Bailey, B. A., Hebbar, P. K., Sanogo, S., & Lumsden, R. D. (2001). The impact of plant diseases on world chocolate production. Plant Health Progress. doi: 10.1094/PHP-2001-0709-01-RV. Published online.Google Scholar
  11. Bradeau, J. (1969). Le Cacaoyer. Paris: Maisonneuve et Larose.Google Scholar
  12. Brasier, C. M., & Griffin, M. J. (1979). Taxonomy of ‘Phytophthora palmivora’ on cocoa. Transactions of the British Mycological Society, 72, 111–143.CrossRefGoogle Scholar
  13. Brunt, A. A. (1975). The effects of cocoa swollen‐shoot virus on the growth and yield of Amelonado and Amazon cocoa (Theobroma cacao) in Ghana. Annals of Applied Biology, 80(2), 169–180.CrossRefGoogle Scholar
  14. Brunt, A., Crabtree, K., Dallwitz, M., Gibbs, A., & Watson, L. (Eds.). (1996). Viruses of plants. Descriptions and lists from the VIDE database. Wallingford: CAB International.Google Scholar
  15. Brunt, A. K., & Kenton, R. H. (1971). Viruses infecting cacao. Review of Plant Pathology, 50, 591–602.Google Scholar
  16. Caldas, M. M., & Perz, S. (2013). Agroterrorism? The causes and consequences of the appearance of witch’s broom disease in cocoa plantations of southern Bahia, Brazil. Geoforum, 47, 147–157.CrossRefGoogle Scholar
  17. Carvalho, G. M. A., Carvalho, C. R., Barreto, R. W., & Evans, H. C. (2014). Coffee rust genome measured using flow cytometry: Does size matter? Plant Pathology, 63, 1022–1026.CrossRefGoogle Scholar
  18. Carvalho, R. C., Fernandes, R. C., Carvalho, G. M., Barreto, R. W., & Evans, H. C. (2011). Cryptosexuality and the genetic diversity paradox in coffee rust, Hemileia vastatrix. PLoS One, 6, e26387. doi: 10.1371/journal.pone.0026387.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Crozier, J., Thomas, S. E., Aime, M. C., Evans, H. C., & Holmes, K. A. (2006). Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathology, 55, 783–791.CrossRefGoogle Scholar
  20. de Albuquerque, P. S. B., Silva, S. D. V. M., Luz, E. D. M. N., Pires, J. L., Vieira, A. M. C., Demetrio, C. G. B., et al. (2010). Novel sources of witches’ broom resistance (causal agent Moniliophthora perniciosa) from natural populations of Theobroma cacao from the Brazilian Amazon. Euphytica, 172, 125–138.CrossRefGoogle Scholar
  21. de Souza, J. T., Pomella, A. W. V., Bowers, J. H., Pirovani, C. P., Loguercio, L. L., & Hebbar, K. P. (2006). Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches’-broom pathogen. Phytopathology, 96, 61–67.CrossRefPubMedGoogle Scholar
  22. Domfeh, O., Dzahini-Obiatey, H., Ameyaw, G. A., Abaka-Ewusie, K., & Opoku, G. (2011). Cocoa swollen shoot virus disease situation in Ghana: A review of current trends. African Journal of Agricultural Research, 6, 5033–5039.Google Scholar
  23. Duguma, B., Gockowski, J., & Bakala, J. (2001). Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: Challenges and opportunities. Agroforestry Systems, 51, 177–188.CrossRefGoogle Scholar
  24. Dzahini-Obiatey, H., Domfeh, O., & Amoah, F. M. (2010). Over seventy years of a viral disease of cocoa in Ghana: From researchers’ perspective. African Journal of Agricultural Research, 5, 476–485.Google Scholar
  25. Efron, Y., Marfu, J., Faure, M., & Epaina, P. (2002). Screening of segregating genotypes for resistance to vascular-streak dieback under natural conditions in Papua New Guinea. Australian Plant Pathology, 31, 315–319.CrossRefGoogle Scholar
  26. End, M. J., Daymond, A. J., & Hadley, P. (Eds.). (2014). Technical guidelines for the safe movement of cacao germplasm. Revised from the FAO/IPGRI Technical Guidelines No. 20 (Second Update, August 2014). Global Cacao Genetic Resources Network (CacaoNet), Bioversity International, Montpellier.Google Scholar
  27. Engelbrecht, C. J., Harrington, T. C., & Alfenas, A. (2007). Ceratocystis wilt of cacao—A disease of increasing importance. Phytopathology, 97, 1648–1649.CrossRefPubMedGoogle Scholar
  28. Epaina, P. (2012). Identification of molecular markers and quantitative trait loci linked to resistance to vascular streak dieback and Phytophthora pod rot of cacao (Theobroma cacao L.) (Ph.D. thesis). The University of Sydney.Google Scholar
  29. Erwin, D. C., & Ribiero, O. K. (1996). Phytophthora diseases worldwide. St. Paul, MN: American Phytopathological Society.Google Scholar
  30. Evans, H. C. (1971). Transmission of Phytophthora pod rot of cocoa by invertebrates. Nature, 232, 346–347.CrossRefPubMedGoogle Scholar
  31. Evans, H. C. (1973). Invertebrate vectors of Phytophthora palmivora causing black pod disease of cocoa in Ghana. Annals of Applied Biology, 75, 331–345.CrossRefGoogle Scholar
  32. Evans, H. C. (1974). Natural control of arthropods, with special reference to ants (Formicidae) by fungi in the tropical high forest of Ghana. Journal of Applied Ecology, 11, 37–49.CrossRefGoogle Scholar
  33. Evans, H. C. (1980). Pleomorphism in Crinipellis perniciosa, the causal agent of witches’ broom disease of cocoa. Transactions of the British Mycological Society, 74, 515–523.CrossRefGoogle Scholar
  34. Evans, H. C. (1981). Pod rot of cacao caused by Moniliophthora (Monilia) roreri. Phytopathological Paper, 24, 1–44.Google Scholar
  35. Evans, H. C. (1982). Entomogenous fungi in tropical forest ecosystems: An appraisal. Ecological Entomology, 7, 47–60.CrossRefGoogle Scholar
  36. Evans, H. C. (1984). The genus Mycosphaerella and its anamorphs Cercoseptoria, Dothistroma and Lecanosticta on pines. Mycological Papers, 153, 1–102.Google Scholar
  37. Evans, H. C. (1988). Coevolution of entomogenous fungi and their insect hosts. In D. L. Hawksworth & K. A. Pirozynski (Eds.), Coevolution of fungi with plants and animals (pp. 149–171). London and New York: Academic Press.Google Scholar
  38. Evans, H. C. (1995). Fungi as biocontrol agents of weeds: a tropical perspective. Canadian Journal of Botany, 73, 58–64.CrossRefGoogle Scholar
  39. Evans, H. C. (2002a). Biological control of weeds. In F. Kempken (Ed.), The Mycota XI (pp. 135–152). Berlin: Springer.Google Scholar
  40. Evans, H. C. (2002b). Invasive neotropical pathogens of tree crops. In R. Watling, J. C. Frankland, A. M. Ainsworth, S. Isaac, & C. H. Robinson (Eds.), Tropical mycology. Micromycetes (Vol. 2, pp. 83–112). Wallingford: CAB International.CrossRefGoogle Scholar
  41. Evans, H. C. (2007). Cacao diseases – the trilogy revisited. Phytopathology, 97, 1640–1643.CrossRefPubMedGoogle Scholar
  42. Evans, H. C. (2012). Cacao diseases in the Americas: Myths and misnomers. FUNGI, 5, 29–35.Google Scholar
  43. Evans, H. C., & Barreto, R. W. (1996). Crinipellis perniciosa: A much investigated but little understood fungus. Mycologist, 10, 58–61.CrossRefGoogle Scholar
  44. Evans, H. C., & Bastos, C. N. (1980a). Basidiospore germination as a means of assessing resistance to Crinipellis perniciosa (witches’ broom disease) in cocoa cultivars. Transactions of the British Mycological Society, 74, 525–536.CrossRefGoogle Scholar
  45. Evans, H. C., & Bastos, C. N. (1980b). Um novo metodo para testar resistencia do cacau a vassoura de bruxa (Crinipellis perniciosa). Revista Theobroma, 10, 175–186.Google Scholar
  46. Evans, H. C., Bezerra, J. L., & Barreto, R. W. (2013). Of mushrooms and chocolate trees: Aetiology and phenology of witches’ broom and frosty pod diseases of cacao. Plant Pathology, 62, 728–740.CrossRefGoogle Scholar
  47. Evans, H. C., & Ellison, C. A. (1990). Classical biological control of weeds with micro-organisms: Past, present, prospects. Aspects of Applied Biology, 24, 39–49.Google Scholar
  48. Evans, H. C., & Ellison, C. A. (2004). The new encounter concept: Centres of origin, host specificity and plant pathogens. In J. M. Cullen, D. T. Briese, D. J. Kriticos, W. M. Lonsdale, L. Morin, & J. K. Scott (Eds.), Proceedings of the Eleventh International Symposium on Biological Control of Weeds (pp. 42–47). Canberra: CSIRO Publications.Google Scholar
  49. Evans, H. C., Holmes, K. A., Phillips, W., & Wilkinson, M. J. (2002). What’s in a name. Crinipellis, the final resting place for the frosty pod pathogen of cocoa? Mycologist, 16, 148–152.Google Scholar
  50. Evans, H. C., Holmes, K. A., & Reid, A. P. (2003a). Phylogeny of the frosty pod rot pathogen of cocoa. Plant Pathology, 52, 149–160.CrossRefGoogle Scholar
  51. Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003b). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress, 2, 149–160.CrossRefGoogle Scholar
  52. Evans, H. C., Stalpers, J. A., Samson, R. A., & Benny, G. L. (1978). On the taxonomy of Monilia roreri, an important pathogen of Theobroma cacao in South America. Canadian Journal of Botany, 56, 2528–2532.CrossRefGoogle Scholar
  53. FAOSTAT Online Database. (2014).
  54. Fernandes, R. C., Evans, H. C., & Barreto, R. W. (2009). Observations on the occurrence and mode of germination of teliospores of Hemileia vastatrix in Brazil. Tropical Plant Pathology, 34, 108–113.CrossRefGoogle Scholar
  55. Flood, J., Guest, D., Holmes, K. A., Keane, P., Padi, B., & Sulistyowati, E. (2004). Cocoa under attack. In J. Flood & R. Murphy (Eds.), Cocoa futures (p. 164). Chinchina, CO: CABI-FEDERACAFE.Google Scholar
  56. Frias, G. A., Purdy, L. H., & Schmidt, R. A. (1991). Infection biology of Crinipellis perniciosa on vegetative flushes of cacao. Plant Disease, 75, 552–556.CrossRefGoogle Scholar
  57. Fulton, R. H. (1989). The cacao disease trilogy: Black pod, monilia pod rot and witches’ broom. Plant Disease, 73, 601–603.CrossRefGoogle Scholar
  58. George, E. (2013). Overview of global cocoa, coffee and sugar markets. Accessed April 6, 2015, from
  59. Gotsch, N. (1997). Cocoa crop protection: An expert forecast on future progress, research priorities and policy with the help of the Delphi survey. Crop Protection, 16, 227–233.CrossRefGoogle Scholar
  60. Griffith, G. W., Nicholson, J., Nenninger, A., Birch, R. N., & Hedger, J. N. (2003). Witches’ brooms and frosty pods: Two major pathogens of cacao. New Zealand Journal of Botany, 41, 423–435.CrossRefGoogle Scholar
  61. Guest, D. (2007). Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology, 97, 1650–1653.CrossRefPubMedGoogle Scholar
  62. Guest, D., & Keane, P. (2007). Vascular-streak dieback: A new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology, 97, 1654–1657.CrossRefPubMedGoogle Scholar
  63. Gutiérrez, O. A., Campbell, A. S., & Phillips-Mora, W. (2015). Breeding for disease resistance in cacao. In B. A. Bailey & L. W. Meinhardt (Eds.), Cacao diseases: A history of old enemies and new encounters. Cham: Springer.Google Scholar
  64. Hallett, S. G. (2006). Dislocation from coevolved relationships: A unifying theory for plant invasion and naturalization. Weed Science, 54, 282–290.Google Scholar
  65. Holmes, K. A., Evans, H. C., Wayne, S., & Smith, J. (2003). Irvingia, a forest host of the cocoa black-pod pathogen, Phytophthora megakarya, in Cameroon. Plant Pathology, 52, 486–490.CrossRefGoogle Scholar
  66. Holmes, K. A., Schroers, H. J., Thomas, S. E., Evans, H. C., & Samuels, G. J. (2004). Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycological Progress, 3, 199–210.CrossRefGoogle Scholar
  67. Hughes, J. d’A., & Ollennu, L. A. (1993). The virobacterial agglutination test as a rapid means of detecting cocoa swollen shoot virus disease. Annals of Applied Biology, 122, 299–310.Google Scholar
  68. ICCO. (2010). Annual report 20092010. International Cocoa Organization.
  69. James, W. C. (1974). Assessment of plant diseases and losses. Annual Review of Phytopathology, 12, 27–48.CrossRefGoogle Scholar
  70. Junior, P. (2006). Terrorismo Biologico. Veja, 1961, 60–63.Google Scholar
  71. Keane, P. J., Flentje, N. T., & Lamb, K. P. (1972). Investigation of vascular streak dieback of cocoa in Papua New Guinea. Australian Journal of Biological Sciences, 25, 553–564.Google Scholar
  72. Kouakou, K., Kébé, B. I., Kouassi, N., Aké, S., Cilas, C., & Muller, E. (2012). Geographical distribution of Cacao swollen shoot virus molecular variability in Côte d’Ivoire. Plant Disease, 96, 1445–1450.CrossRefGoogle Scholar
  73. Krauss, U., Hidalgo, E., Bateman, R., Adonijah, V., Arroyo, C., García, J., et al. (2010). Improving the formulation and timing of application of endophytic biocontrol and chemical agents against frosty pod rot (Moniliophthora roreri) in cocoa (Theobroma cacao). Biological Control, 54, 230–240.CrossRefGoogle Scholar
  74. Laker, H. A. (1991). Evaluation of systemic fungicides for control of witches’ broom disease of cocoa in Trinidad. Tropical Agriculture, 68, 119–124.Google Scholar
  75. Laker, H. A., & Ram, A. (1992). Investigations on integrated control of witches’ broom disease of cocoa in Rondonia State, Brazil. Tropical Pest Management, 38, 354–358.CrossRefGoogle Scholar
  76. Lanaud, C., Motomayor, J.-C., & Sounigo, O. (2003). In P. Hamon, M. Seguin, X. Perrier, & J. C. Glaszmann (Eds.), Genetic diversity of cultivated tropical crops (pp. 125–156). Enfield, NH: CIRAD, SPI.Google Scholar
  77. Lockhart, B. E., & Sackey, S. T. (2001). Cacao swollen shoot. In O. C. Maloy & T. D. Murray (Eds.), Encyclopedia of plant pathology (pp. 172–173). New York: Wiley.Google Scholar
  78. Lopes, U. V., Monteiro, W. R., Pires, J. L., Clement, D., Yamada, M. M., & Gramacho, K. P. (2011). Cacao breeding in Bahia, Brazil – strategies and results. Crop Breeding and Applied Biotechnology, S1, 73–81.CrossRefGoogle Scholar
  79. Luz, E. D. M. N. (1989) The role of five species of Phytophthora in infection and disease of roots, stems and pods of Theobroma cacao L. (Ph.D. Thesis). University of Florida, Gainesville, 184 ppGoogle Scholar
  80. Maddison, A. C., Anderbahn, T., Aranzazu, F., & Silva-Acuna, R. (1993). Comparative phytosanitation studies. In S. A. Rugard, A. C. Maddison, & T. Anderbhan (Eds.), Disease management in cocoa. Comparative epidemiology of witches’ broom (pp. 165–188). London: Chapman and Hall.Google Scholar
  81. Medeiros, F. H. V., Pomella, A. W. V., de Souza, J. T., Niella, G. R., Valle, R., Bateman, R. P., et al. (2010). A novel, integrated method for management of witches’ broom disease in Cacao in Bahia, Brazil. Crop Protection, 29, 704–711.CrossRefGoogle Scholar
  82. Meinhardt, L. W., Rincones, J., Bailey, B. A., Aime, M. C., Griffith, G. W., Zhang, D., et al. (2008). Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Molecular Plant Pathology, 9, 577–588.CrossRefPubMedGoogle Scholar
  83. Muller, E., Jacquet, E., & Yot, P. (2001). Early detection of cacao swollen shoot virus using polymerase chain reaction. Journal of Virological Methods, 93, 15–22.CrossRefPubMedGoogle Scholar
  84. Ndoumbe-Nkenga, M., Cilasb, C., Nyemba, E., Nyassea, S., Bieysseb, D., Florib, A., et al. (2004). Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Protection, 23, 415–424.CrossRefGoogle Scholar
  85. Nyassé, S., Grivet, L., Risterucci, A. M., Blaha, G., Berry, D., Lanaud, C., et al. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research, 103, 1225–1234.CrossRefGoogle Scholar
  86. Opoku, I. Y., Akrofi, A. Y., & Appiah, A. A. (2002). Shade trees are alternative hosts of the cocoa pathogen Phytophthora megakarya. Crop Protection, 21, 629–634.CrossRefGoogle Scholar
  87. Oro, F. Z., Bonnot, F., Ngo-Bieng, M.-A., Delaitre, E., Dufour, B. P., Ametefe, K. E., et al. (2012). Spatiotemporal pattern analysis of Cacao swollen shoot virus in experimental plots in Togo. Plant Pathology, 61, 1043–1051.CrossRefGoogle Scholar
  88. Padi, F. K., Domfeh, O., Takrama, J., & Opoku, S. Y. (2013). An evaluation of gains in breeding for resistance to the cocoa swollen shoot virus disease in Ghana. Crop Protection, 51, 24–31.CrossRefGoogle Scholar
  89. Pereira, J. L., Dealmeida, L. C. C., & Santos, S. M. (1996). Witches-broom disease of cocoa in Bahia–attempts at eradication and containment. Crop Protection, 15, 743–752.CrossRefGoogle Scholar
  90. Phillips-Mora, W., Aime, M. C., & Wilkinson, M. J. (2007a). Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. Plant Pathology, 56, 911–922.Google Scholar
  91. Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., & Motamayor-Arias, J. C. (2013). Catalogue of cacao clones selected by CATIE for commercial plantings. Technical series. Technical manual no. 105. CATIE, Turrialba.Google Scholar
  92. Phillips-Mora, W., Castillo, J., Krauss, U., Rodríguez, E., & Wilkinson, M. J. (2005). Evaluation of cacao (Theobroma cacao) clones against seven Colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathology, 54, 483–490.CrossRefGoogle Scholar
  93. Phillips-Mora, W., Ortiz, C. F., & Aime, M. C. (2007b). Fifty years of frosty pod rot in Central America: Chronology of its spread and impact from Panama to Mexico. In Proceedings of the 15th International Cocoa Research Conference, San José, Costa Rica (Vol. I, pp. 1039–1047).Google Scholar
  94. Phillips-Mora, W., & Wilkinson, M. J. (2007). Frosty pod, a disease of limited geographic distribution but unlimited potential for damage. Phytopathology, 97, 1644–1647.CrossRefPubMedGoogle Scholar
  95. Ploetz, R. C. (2006). Fusarium-induced diseases of tropical, perennial crops. Phytopathology, 96, 648–652.CrossRefPubMedGoogle Scholar
  96. Ploetz, R. C. (2007a). Cacao diseases: Important threats to chocolate production worldwide. Phytopathology, 97, 1634–1639.CrossRefPubMedGoogle Scholar
  97. Ploetz, R. C. (2007b). Diseases of tropical perennial crops: Challenging problems in diverse environments. Plant Disease, 91, 644–663.CrossRefGoogle Scholar
  98. Purdy, L. H., & Schmidt, R. A. (1996). Status of cacao witches’ broom: Biology, epidemiology, and management. Annual Review of Phytopathology, 34, 573–594.CrossRefPubMedGoogle Scholar
  99. Purdy, L. H., Schmidt, R. A., & Gramacho, K. P. (1998). Diseases of cacao (Theobroma cacao L.). APSnet online at
  100. Resende, M. L. V., Flood, J., & Cooper, R. M. (1994). Host specialization of Verticillium dahliae, with emphasis on isolates from cocoa (Theobroma cacao). Plant Pathology, 43, 104–111.CrossRefGoogle Scholar
  101. Rudgard, S. A., & Butler, D. R. (1987). Witches’ broom disease in Rondonia, Brazil: Pod infection in relation to pod susceptibility, wetness, inoculum, and phytosanitation. Plant Pathology, 36, 515–522.CrossRefGoogle Scholar
  102. Sagemann, W., Lesemann, D.-E., Paul, H. L., Adomako, D., & Owusu, G. K. (1985). Detection and comparison of some Ghanaian isolates of cacao swollen shoot virus (CSSV) by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy (IEM) using an antiserum to CSSV strain 1A. Phytopathologische Zeitschrift, 114, 79–89.CrossRefGoogle Scholar
  103. Samson, R. A., Evans, H. C., & Latge, J. P. (1988). Atlas of entomopathogenic fungi. Berlin: Springer. 192 pp.CrossRefGoogle Scholar
  104. Samuels, G. J., Ismaiel, A., Rosmana, A., Junaid, M., Guest, D., McMahon, P., et al. (2012). Vascular Streak Dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy. Fungal Biology, 116, 11–23.CrossRefPubMedGoogle Scholar
  105. Savary, S., Ficke, A., Aubertot, J.-N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519–537.CrossRefGoogle Scholar
  106. Soberanis, W., Rios, R., Arevalo, E., Zuniga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18, 677–685.CrossRefGoogle Scholar
  107. ten Hoopen, G. M., Deberdt, P., Mbenoun, M., & Cilac, C. (2012). Modelling cacao pod growth: Implications for disease control. Annals of Applied Biology, 160, 260–272.CrossRefGoogle Scholar
  108. ten Hoopen, G. M., & Krauss, U. (2006). Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Protection, 25, 89–107.CrossRefGoogle Scholar
  109. The Guardian. (2015). The future of chocolate: Why cocoa production is at risk. Accessed February 26, 2015, from
  110. Thomas, S. E., Crozier, J., Aime, M. C., Evans, H. C., & Holmes, K. A. (2008). Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador. Mycological Research, 112, 852–860.CrossRefPubMedGoogle Scholar
  111. Thresh, J. M., & Owusu, G. K. (1986). The control of cocoa swollen shoot disease in Ghana: An evaluation of eradication procedures. Crop Protection, 5, 41–52.CrossRefGoogle Scholar
  112. Thresh, J. M., Owusu, G. K., Boamah, A., & Lockwood, G. (1988). Cocoa swollen shoot: An archetypal crowd disease. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 95, 428–446.Google Scholar
  113. Tinsley, T. W. (1971). The ecology of cacao viruses. The role of wild hosts in the incidence of swollen shoot virus in West Africa. Journal of Applied Ecology, 8, 491–495.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Plant PathologyUniversity of Florida, IFAS, Tropical Research and Education CenterHomesteadUSA

Personalised recommendations