Skip to main content

The Vacuolar Proton ATPase (V-ATPase): Regulation and Therapeutic Targeting

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

Abstract

V-ATPases are highly conserved proton pumps that are found in all eukaryotic cells. They play vital housekeeping roles in cell physiological processes by performing their classical functions in acidifying luminal compartments of a variety of endomembrane organelles. Recently, it has become evident that V-ATPases also have nonclassical roles that require their direct interaction, apart from their proton translocating function. Moreover, V-ATPases can have specialized tissue-specific functions in organisms, where V-ATPase mutations or inappropriate expression can result in pathological conditions. Because of their multi-subunit structure and numerous subunit variants, V-ATPase expression and function may be uniquely fine-tuned for specific, biologically significant roles. From an interventionist point of view, these same traits potentially make V-ATPases uniquely selectively targetable, both within an organism and among different species. Recent examples, that have at least provided proof of principle for this notion, span fields ranging from medicine to agriculture. The study of V-ATPases in the last three decades has produced thousands of publications and many dozens of review articles. The present work seeks to provide a concise overview of the more recent works on structure and function of V-ATPases, their occurrence and importance, how they are regulated, and how they might be targeted. We focus on recent primary literature, but historical papers of interest and important reviews are also cited. In the areas of targeted pharmaceutical and pesticidal intervention we present published strategies for drug discovery and also provide relevant proofs of concept for targeting V-ATPases to the benefit human health and prosperity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Futai M, Nakanishi-Matsui M, Okamoto H et al (2012) Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. Biochim Biophys Acta 1817:1711–1721

    Article  CAS  PubMed  Google Scholar 

  2. Kane PM (2007) The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39:415–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. Biochemistry 49:4715–4723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  CAS  PubMed  Google Scholar 

  5. Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  PubMed  Google Scholar 

  6. Nordström T, Rotstein OD, Romanek R et al (1995) Regulation of cytoplasmic pH in osteoclasts: contribution of proton pumps and a proton-selective conductance. J Biol Chem 270:2203–2212

    Article  PubMed  Google Scholar 

  7. Schewe B, Schmälzlin E, Walz B (2008) Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase. J Exp Biol 211:805–815

    Article  CAS  PubMed  Google Scholar 

  8. Grinstein S, Nanda A, Lukacs G et al (1992) V-ATPases in phagocytic cells. J Exp Biol 172:179–192

    CAS  PubMed  Google Scholar 

  9. Saw NMN, Kang S-YA, Parsaud L et al (2011) Vacuolar H+-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage. Mol Biol Cell 22:3394–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Manolson MF, Yu H, Chen W et al (2003) The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (≥10 nuclei) and small (≤5 nuclei) osteoclasts. J Biol Chem 278:49271–49278

    Article  CAS  PubMed  Google Scholar 

  11. Henriksen K, Sørensen MG, Jensen VK et al (2008) Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif Tissue Int 83:230–242

    Article  CAS  PubMed  Google Scholar 

  12. Brown D, Smith PJS, Breton S (1997) Role of V-ATPase-rich cells in acidification of the male reproductive tract. J Exp Biol 200:257–262

    CAS  PubMed  Google Scholar 

  13. Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiology 28:318–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Brown D, Paunescu TG, Breton S et al (2009) Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle trafficking. J Exp Biol 212:1762–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hinton A, Sennoune SR, Bond S et al (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Xu M, Xia M, Li X-X et al (2012) Requirement of translocated lysosomal V1 H+-ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary epithelial cells. Mol Biol Cell 23:1546–1557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Strasser B, Iwaszkiewicz J, Michielin O et al (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30:4126–4141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hiesinger PR, Fayyazuddin A, Mehta SQ et al (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schumacher K (2006) Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9:595–600

    Article  CAS  PubMed  Google Scholar 

  20. Sabota JA, Bäck N, Eipper BA et al (2009) Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 122:3542–3553

    Article  CAS  Google Scholar 

  21. Sun-Wada G-H, Toyomura T, Murata Y et al (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. J Cell Sci 119:4531–4540

    Article  CAS  PubMed  Google Scholar 

  22. Hurtado-Lorenzo A, Skinner M, El Annan J et al (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136

    Article  CAS  PubMed  Google Scholar 

  23. Merkulova M, Bakulina A, Thaker YR et al (2010) Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. Biochim Biophys Acta 1797:1398–1409

    Article  CAS  PubMed  Google Scholar 

  24. Hofmann I, Thompson A, Sanderson CM et al (2007) The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol 17:711–716

    Article  CAS  PubMed  Google Scholar 

  25. Hosokawa H, Dip PV, Merkulova M et al (2013) The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. J Biol Chem 288:5896–5913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Marshansky V, Rubinstein JL, Grüber G (2014) Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim Biophys Acta 1837:857–879

    Article  CAS  PubMed  Google Scholar 

  27. Poëa-Guyon S, Ammar MR, Erard M et al (2013) The V-ATPase membrane domain is a sensor of granular pH that controls the exocytic machinery. J Cell Biol 203:283–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Coonrod EM, Graham LA, Carpp LN et al (2013) Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain. Dev Cell 27:462–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yan Y, Denef N, Schüpbach T (2009) The vacuolar proton pump (V-ATPase) is required for Notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cruciat C-M, Ohkawara B, Acebron SP et al (2010) Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327:459–463

    Article  CAS  PubMed  Google Scholar 

  31. Jewell JL, Russel RC, Guan K-L (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC et al (2011) Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30:3242–3258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126:1713–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sancak Y, Sabatini DM (2009) Rag proteins regulate amino acid-induced mTORC1 signaling. Biochem Soc Trans 37:289–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zoncu R, Bar-Peled L, Efeyan A et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334:678–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bar-Peled L, Schweitzer LD, Zoncu R et al (2012) Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196–1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Abraham RT (2015) Making sense of amino acid sensing. Science 347:128–129

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Tsun Z-Y, Wolfson RL et al (2015) Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Xu Y, Parmar A, Roux E et al (2012) Epidermal growth factor-induced vacuolar (H+)-ATPase assembly: a role in signaling via mTORC1 activation. J Biol Chem 287:26409–26422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Q Rev Biophys 44:311–356

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Zheng Y, Mazon H et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Smith AN, Lovering RC, Futai M et al (2003) Revised nomenclature for mammalian vacuolar-type H+-ATPase subunit genes. Mol Cell 12:801–803

    Article  CAS  PubMed  Google Scholar 

  44. Miranda KC, Karet FE, Brown D (2010) An extended nomenclature for mammalian V-ATPase subunit genes and splice variants. PLoS One 5, e9531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lee BS (2012) Regulation of V-ATPase expression in mammalian cells. Curr Protein Peptide Sci 13:107–116

    Article  Google Scholar 

  46. Holliday LS (2014) Vacuolar H+-ATPase: an essential multitasking enzyme in physiology and pathophysiology. New J Sci 2014:1–21. doi:10.1155/2014/675430

    Article  CAS  Google Scholar 

  47. Finnigan GC, Hanson-Smith V, Houser BD et al (2011) The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae. Mol Biol Cell 22:3176–3191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Manolson MF, Wu B, Proteau D et al (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    CAS  PubMed  Google Scholar 

  49. Kawasaki-Nishi S, Bowers K, Nishi T et al (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    Article  CAS  PubMed  Google Scholar 

  50. Karet FE, Finberg KE, Nelson RD et al (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    Article  CAS  PubMed  Google Scholar 

  51. Păunescu TG, Rodriguez S, Benz E et al (2012) Loss of the V-ATPase B1 subunit isoform expressed in non-neuronal cells of the mouse olfactory epithelium impairs olfactory function. PLoS One 7, e45395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Guillard M, Dimopoulou A, Fischer B et al (2009) Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta 1792:903–914

    Article  CAS  PubMed  Google Scholar 

  53. Fischer B, Dimopoulou A, Egerer J et al (2012) Furher characterization of ATP6V0A2-related autosomal recessive cutis laxa. Hum Genet 131:1761–1773

    Article  CAS  PubMed  Google Scholar 

  54. Sobacchi C, Schulz A, Coxon FP et al (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536

    Article  CAS  PubMed  Google Scholar 

  55. Stover EH, Borthwick KJ, Bavalia C et al (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Batlle D, Haque SK (2012) Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant 27:3691–3704

    Article  CAS  PubMed  Google Scholar 

  57. Lee S-H, Rho J, Jeong D et al (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 12:1403–1409

    Article  CAS  PubMed  Google Scholar 

  58. Korvatska O, Strand NS, Berndt JD et al (2013) Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet 22:3259–3268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ramser J, Abidi FE, Burckle CA et al (2005) A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet 14:1019–1027

    Article  CAS  PubMed  Google Scholar 

  60. Holliday LS (2012) Vacuolar H+-ATPase: Targeting a “housekeeping” enzyme for drug development. Curr Protein Peptide Sci 13:105–106

    Article  CAS  Google Scholar 

  61. Kartner N, Manolson MF (2014) Novel techniques in the development of osteoporosis drug therapy: the osteoclast ruffled-border vacuolar H+-ATPase as an emerging target. Expert Opin Drug Discov 9:505–522

    Article  CAS  PubMed  Google Scholar 

  62. Kartner N, Manolson MF (2012) V-ATPase subunit interactions: the long road to therapeutic targeting. Curr Protein Peptide Sci 13:164–179

    Article  CAS  Google Scholar 

  63. Bhargava A, Voronov I, Wang Y et al (2012) Osteopetrosis mutation R444L causes ER retention and misprocessing of vacuolar H+-ATPase a3 subunit. J Biol Chem 287:26829–26839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gharanei S, Zatyka M, Astuti D et al (2013) Vacuolar-type H+-ATPase V1A subunit is a molecular partner of Wolfram syndrome 1 (WFS1) protein, which regulates its expression and stability. Hum Mol Genet 22:203–217

    Article  CAS  PubMed  Google Scholar 

  65. Capecci J, Forgac M (2013) Function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem 288:3271–32741

    Article  CAS  Google Scholar 

  66. Nishisho T, Hata K, Nakanishi M et al (2011) The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mousse B16 melanoma cells. Mol Cancer Res 9:845–855

    Article  CAS  PubMed  Google Scholar 

  67. Sennoune SR, Luo D, Martinez-Zaguilán R (2004) Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys 40:185–206

    Article  CAS  PubMed  Google Scholar 

  68. Sennoune SR, Bakunts K, Martínez GM et al (2004) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  CAS  PubMed  Google Scholar 

  69. Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F et al (2010) Multidrug resistance in oral squamous cell carcinoma: the role of vacuolar ATPases. Cancer Lett 295:135–143

    Article  CAS  PubMed  Google Scholar 

  70. Olsson AH, Yang BT, Hall E et al (2011) Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 165:589–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Molina MF, Qu H-Q, Rentfro AR et al (2011) Decreased expression of ATP6V1H in type 2 diabetes: a pilot report on the diabetes risk study of Mexican Americans. Biochem Biophys Res Commun 412:728–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Mangieri LR, Mader BJ, Thomas CE et al (2014) ATP6V0C knockdown in neuroblastoma cell alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. PLoS One 9, e93257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ramachandran N, Munteanu I, Wang P et al (2013) VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol (Berl) 125:439–457

    Article  CAS  Google Scholar 

  74. Price PA, June HH, Buckley JR et al (2002) SB 242784, a selective inhibitor of the osteoclastic V-H+-ATPase, inhibits arterial calcification in the rat. Circ Res 91:547–552

    Article  CAS  PubMed  Google Scholar 

  75. Rojas JD, Sennoune SR, Martinez GM et al (2004) Plasmalemmal vacuolar H+-ATPase is decreased in microvascular endothelial cells from a diabetic model. J Cell Physiol 201:190–200

    Article  CAS  PubMed  Google Scholar 

  76. Rojas JD, Sennoune SR, Maita D et al (2006) Vacuolar-type H+-ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 291:H1147–H1157

    Article  CAS  PubMed  Google Scholar 

  77. Knight AJ, Behm CA (2012) Minireview: the role of the vacuolar ATPase in nematodes. Exp Parasitol 132:47–55

    Article  CAS  PubMed  Google Scholar 

  78. Jia C, Yu Q, Zhang B et al (2014) Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans. Fungal Genet Biol 71:58–67

    Article  CAS  PubMed  Google Scholar 

  79. Kang S, Shields AR, Jupatanakul N et al (2014) Supressing dengue-2 infection by chemical inhibition of Aedes aegypti host factors. PLoS Negl Trop Dis 8, e3084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Geyer M, Yu H, Mandic R et al (2002) Subunit H of the V-ATPase binds to the medium chain of adaptor protein complex 2 and connects Nef to the endocytic machinery. J Biol Chem 277:28521–28529

    Article  CAS  PubMed  Google Scholar 

  81. Müller KH, Kainov DE, El Bakkouri K et al (2011) The proton translocation domain of cellular vacuolar ATPase provides a target for the treatment of influenza A virus infections. Br J Pharmacol 164:344–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37:1–7

    Google Scholar 

  83. Rahdari P, Hoseini SM (2011) Salinity stress: a review. Tech J Eng Appl Sci 1:63–66

    Google Scholar 

  84. He X, Huang X, Shen Y et al (2014) Wheat V-H+-ATPase subunit genes significantly affect salt tolerance in Arapidopsis thaliana. PLoS One 9, e86982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Parra KJ (2014) Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: One structure and multiple signals. Eukaryot Cell 13:706–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Maxson ME, Grinstein S (2014) The vacuolar-type H+-ATPase at a glance – more than a proton pump. J Cell Sci 127:4987–4993

    Article  CAS  PubMed  Google Scholar 

  87. Lee BS, Underhill DM, Crane MK et al (1995) Transcriptional regulation of the vacuolar H+-ATPase B2 subunit gene in differentiating THP-1 cells. J Biol Chem 270:7320–7329

    Article  CAS  PubMed  Google Scholar 

  88. Lee BS, Krits I, Crane-Zelkovic MK et al (1997) A novel transcription factor regulates expression of the vacuolar H+-ATPase B2 subunit through AP-2 sites during monocytic differentiation. J Biol Chem 272:174–181

    Article  CAS  PubMed  Google Scholar 

  89. Wang S-P, Krits I, Bai S et al (2002) Regulation of enhanced vacuolar H+-ATPase expression in macrophages. J Biol Chem 277:8827–8834

    Article  CAS  PubMed  Google Scholar 

  90. Izumi H, Ise T, Murakami T et al (2003) Structural and functional characterization of two human V-ATPase subunit gene promoters. Biochim Biophys Acta 1628:97–104

    Article  CAS  PubMed  Google Scholar 

  91. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  92. Robinson PN, Böhme U, Lopez R et al (2004) Gene-ontology analysis reveals association of tissue-specific 5′CpG-island genes with development and embryogenesis. Hum Mol Genet 13:1969–1978

    Article  CAS  PubMed  Google Scholar 

  93. Illingworth RS, Bird AP (2009) CpG islands – ‘a rough guide’. FEBS Lett 583:1713–1720

    Article  CAS  PubMed  Google Scholar 

  94. Chatterjee R, Vinson C (2012) CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta 1819:763–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  96. Vidarsson H, Westergren R, Heglind M et al (2009) The forkhead transcription factor Foxi1 is a master regulator of vacuolar H+-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLoS One 4, e4471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Blomqvist SR, Vidarsson H, Fitzgerald S et al (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113

    Google Scholar 

  98. Jackson BC, Carpenter C, Nebert DW et al (2010) Update of human and mouse forkead box (FOX) gene families. Hum Genomics 4:345–352

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  100. Song I, Kim JH, Kim K et al (2009) Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett 583:2435–2440

    Article  CAS  PubMed  Google Scholar 

  101. Beranger GE, Momier D, Rochet N et al (2006) RANKL treatment releases the negative regulation of the poly(ADP-ribose) polymerase-1 on Tcirg1 gene expression during osteoclastogenesis. J Bone Miner Res 21:1757–1769

    Article  CAS  PubMed  Google Scholar 

  102. Beranger GE, Momier D, Guigonis J-M et al (2007) Differential binding of poly(ADP-ribose) polymerase-1 and JunD/Fra2 accounts for RANKL-induced Tcirg1 gene expression during osteoclastogenesis. J Bone Miner Res 22:975–983

    Article  CAS  PubMed  Google Scholar 

  103. Takayanagi H (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 116:227–237

    Article  CAS  Google Scholar 

  104. Feng H, Cheng T, Steer JH et al (2009) Myocyte enhancer factor 2 and microphthalmia-associated transcription factor cooperate with NFATc1 to transactivate the V-ATPase d2 promoter during RANKL-induced osteoclastogenesis. J Biol Chem 284:14667–14676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Jouret F, Auzanneau C, Debaix H et al (2005) Ubiquitous and kidney-specific subunits of vacuolar H+-ATPase are differentially expressed during nephrogenesis. J Am Soc Nephrol 16:3235–3246

    Article  CAS  PubMed  Google Scholar 

  106. Lee BS, Holliday LS, Krits I et al (1999) Vacuolar H+-ATPase activity and expression in mouse bone marrow cultures. J Bone Miner Res 14:2127–2136

    Article  CAS  PubMed  Google Scholar 

  107. Jeyaraj S, Dakhlallah D, Hill SR et al (2005) HuR stabilizes vacuolar H+-translocating ATPase mRNA during cellular energy depletion. J Biol Chem 280:37957–37964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Khabar KSA, Bakheet T, Williams BRG (2005) AU-rich transient response transcripts in the human genome: expressed sequence tag clustering and gene discovery approach. Genomics 85:165–175

    Article  CAS  PubMed  Google Scholar 

  109. Peng SS-Y, Chen C-YA XN et al (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 17:3461–3470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17:3448–3460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Jeyaraj S, Dakhlallah D, Hill SR et al (2006) Expression and distribution of HuR during ATP depletion and recovery in proximal tubule cells. Am J Physiol Renal Physiol 291:F1255–F1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. López de Silanes I, Zhan M, Lal A et al (2004) Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci U S A 101:2987–2992

    Article  CAS  PubMed  Google Scholar 

  113. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  PubMed  Google Scholar 

  114. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Stark A, Brennecke J, Bushati N et al (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123:1133–1146

    Article  CAS  PubMed  Google Scholar 

  116. O'Connor DT, Zhu G, Rao F et al (2008) Heritability and genome-wide linkage in US and Australian twins identify novel genomic regions controlling chromogranin A: implications for secretion and blood pressure. Circulation 118:247–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Wei Z, Biswas N, Courel M et al (2011) A common genetic variant in the 3′-UTR of vacuolar H+-ATPase ATP6V0A1 creates a micro-RNA motif to alter chromogranin A processing and hypertension risk. Circ Cardiovasc Genet 4:381–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Poëa-Guyon S, Amar M, Fossier P et al (2006) Alternative splicing controls neuronal expression of V-ATPase subunit a1 and sorting to nerve terminals. J Biol Chem 281:17164–17172

    Article  CAS  PubMed  Google Scholar 

  119. Kawasaki-Nishi S, Yamaguchi A, Forgac M et al (2007) Tissue specific expression of the splice variants of the mouse vacuolar proton-translocating ATPase a4 subunit. Biochem Biophys Res Commun 364:1032–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Smith AN, Skaug J, Choate KA et al (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26:71–75

    Article  CAS  PubMed  Google Scholar 

  121. Smith AN, Borthwick KJ, Karet FE (2002) Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297:169–177

    Article  CAS  PubMed  Google Scholar 

  122. Sun-Wada G-H, Murata Y, Namba M et al (2003) Mouse proton pump ATPase C subunit isoforms (C2-a and C2-b) specifically expressed in kidney and lung. J Biol Chem 278:44843–44851

    Article  CAS  PubMed  Google Scholar 

  123. Heinemann T, Bulwin G-C, Randall J et al (1999) Genomic organization of the gene coding for TIRC7, a novel membrane protein essential for T cell activation. Genomics 57:398–406

    Article  CAS  PubMed  Google Scholar 

  124. Kane PM (1999) Biosynthesis and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 31:49–56

    Article  CAS  PubMed  Google Scholar 

  125. Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312

    Article  CAS  PubMed  Google Scholar 

  126. Davis-Kaplan SR, Compton MA, Flannery AR et al (2006) PKR1 encodes an assembly factor for the yeast V-type ATPase. J Biol Chem 281:32025–32035

    Article  CAS  PubMed  Google Scholar 

  127. Li X, Su RTC, H-t H et al (1998) The molecular chaperone calnexin associates with the vacuolar H+-ATPase from oat seedlings. Plant Cell 10:119–130

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 35:313–322

    Article  CAS  PubMed  Google Scholar 

  129. Merzendorfer H, Gräf R, Huss M et al (1997) Regulation of proton-translocating V-ATPases. J Exp Biol 200:225–235

    CAS  PubMed  Google Scholar 

  130. Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Peptide Sci 13:117–123

    Article  CAS  Google Scholar 

  131. Sumner J-P, Dow JAT, Earley FGP et al (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Article  CAS  PubMed  Google Scholar 

  132. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  133. Merkulova M, Hurtado-Lorenzo A, Hosokawa H et al (2011) Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol Cell Physiol 2011:C1442–C1455

    Article  CAS  Google Scholar 

  134. Lu M, Ammar D, Ives H et al (2007) Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282:24495–24503

    Article  CAS  PubMed  Google Scholar 

  135. Marshansky V, Futai M (2008) The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20:415–426

    Article  CAS  PubMed  Google Scholar 

  136. Tabke K, Albertmelcher A, Vitavska O et al (2014) Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions. Biochem J 462:185–197

    Article  CAS  PubMed  Google Scholar 

  137. Su Y, Blake-Palmer KG, Sorrell S et al (2008) Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J Physiol Renal Physiol 295:F950–F958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Hong-Hermesdorf A, Brüx A, Grüber A et al (2006) A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett 580:932–939

    Article  CAS  PubMed  Google Scholar 

  139. Armbrüster A, Hohn C, Hermesdorf A et al (2005) Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Lett 579:1961–1967

    Article  CAS  PubMed  Google Scholar 

  140. Chan C-Y, Parra KJ (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J Biol Chem 289:19448–19457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Lu M, Sautin YY, Holliday S et al (2004) The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 279:8732–8739

    Article  CAS  PubMed  Google Scholar 

  142. Smardon AM, Diab HI, Tarsio M et al (2014) The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 25:356–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Tuttle AM, Hoffman TL, Schilling TF (2014) Rabconnectin-3a regulates vesicle endocytosis and canonical Wnt signaling in zebrafish neural crest migration. PLoS Biol 12, e1001852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Dechant R, Binda M, Lee SS et al (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29:2515–2526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Sautin YY, Lu M, Gaugler A et al (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25:575–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Oehlke O, Schlosshardt C, Feuerstein M et al (2012) Acidosis-induced V-ATPase trafficking in salivary ducts is initiated by cAMP/PKA/CREB pathway via regulation of Rab11b expression. Int J Biochem Cell Biol 44:1254–1265

    Article  CAS  PubMed  Google Scholar 

  147. Diakov TT, Kane PM (2010) Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J Biol Chem 285:23771–23778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 275:21761–21767

    Article  CAS  PubMed  Google Scholar 

  149. Gräf R, Harvey WR, Wieczorek H (1996) Purification and properties of a cytosolic V1-ATPase. J Biol Chem 271:20908–20913

    Google Scholar 

  150. Diab H, Ohira M, Liu M et al (2009) Subunit interactions and requirements for inhibition of the yeast V1-ATPase. J Biol Chem 284:13316–13325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Jefferies KC, Forgac M (2008) Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with thte rotary subunit F. J Biol Chem 283:4512–4519

    Article  CAS  PubMed  Google Scholar 

  152. Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissociation and its dependency on activity. J Biol Chem 282:24743–24751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Kawasaki-Nishi S, Nishi T, Forgac M (2001) Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276:17941–17948

    Article  CAS  PubMed  Google Scholar 

  154. Trombetta ES, Ebersold M, Garrett W et al (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403

    Article  CAS  PubMed  Google Scholar 

  155. Liberman R, Bond S, Shainheit MG et al (2014) Regulated assembly of vacuolar ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidyl 3-kinase/mTOR-dependent pathway. J Biol Chem 289:1355–1363

    Article  CAS  PubMed  Google Scholar 

  156. Chintagari NR, Mishra A, Su L et al (2010) Vacuolar ATPase regulates surfactant secretion in rat alveolar typeII cells by modulating lamellar body calcium. PLoS One 5, e9228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Nakamura S (2004) Glucose activates H+-ATPase in kidney epithelial cells. Am J Physiol Cell Physiol 287:C97–C105

    Article  CAS  PubMed  Google Scholar 

  158. Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4:718–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Voss M, Vitavska O, Walz B et al (2007) Stimulus-induced phosphorylation of vacuolar H+-ATPase by protein kinase A. J Biol Chem 282:33735–33742

    Article  CAS  PubMed  Google Scholar 

  160. Finnigan GC, Cronan GE, Park HJ et al (2012) Sorting of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase). J Biol Chem 287:19487–19500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Collaco AM, Geibel P, Lee BS et al (2013) Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR. Am J Physiol Cell Physiol 305:C981–C996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Păunescu TG, Ljubojevic M, Russo LM et al (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 298:F643–F654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Pastor-Soler NM, Hallows KR, Smolak C et al (2008) Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 294:C488–C494

    Article  CAS  PubMed  Google Scholar 

  164. Pech V, Pham TD, Verlander JW et al (2008) Angiotensin II activates H+-ATPase in type A intercalated cells. J Am Soc Nephrol 19:84–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Alzamora R, Thali RF, Gong F et al (2010) PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the A subunit in kidney cells. J Biol Chem 285:24676–24685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Rieg T, Rieg JD (2013) Connecting type A intercalated cell metabolic state to V-ATPase function: phosphorylation does matter! Am J Physiol Renal Physiol 305:F1105–F1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Hallows KR, Alzamora R, Li H et al (2009) AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 296:C672–C681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Alzamora R, Al-Bataineh M, Liu W et al (2013) AMP-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney. Am J Physiol Renal Physiol 305:F943–F956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Lee BS, Gluck SL, Holliday LS (1999) Interaction between vacuolar H+-ATPase and microfilaments during osteoclast activation. J Biol Chem 274:29164–29171

    Article  CAS  PubMed  Google Scholar 

  170. Chen S-H, Bubb MR, Yarmola EG et al (2004) Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 279:7988–7998

    Article  CAS  PubMed  Google Scholar 

  171. Nelson N, Sacher A, Nelson H (2002) The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 3:876–881

    Article  CAS  PubMed  Google Scholar 

  172. Grabe M, Wang H, Oster G (2000) The mechanochemistry of V-ATPase proton pumps. Biophys J 78:2798–2813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Kettner C, Bertl A, Obermeyer G et al (2003) Electrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shunt. Biophys J 85:3730–3738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Li SC, Diakov TT, Xu T et al (2014) The signaling lipid PI(3,5)P2 stabilizes V1–Vo sector interactions and activates the V-ATPase. Mol Biol Cell 25:1251–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Chung J-H, Lester RL, Dickson RC (2003) Sphingolipid requirement for generation of a functional V1 component of vacuolar ATPase. J Biol Chem 278:28872–28881

    Article  CAS  PubMed  Google Scholar 

  176. van der Poel S, Wolthoorn J, van den Heuvel D et al (2011) Hyperacidification of trans-Golgi network and endo/lysosomes in melanocytes by glucosylceramide-dependent V-ATPase activity. Traffic 12:1634–1647

    Article  CAS  PubMed  Google Scholar 

  177. Yamaguchi M, Kasamo K (2001) Modulation in the activity of purified tonoplast H+-ATPase by tonoplast glycolipids prepared from cultured rice (Oryza sativa L. var. Boro) cells. Plant Cell Physiol 42:516–523

    Article  CAS  PubMed  Google Scholar 

  178. Yoshida K, Ohnishi M, Fukao Y et al (2013) Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. Plant Cell Physiol 54:1571–1584

    Article  CAS  PubMed  Google Scholar 

  179. Zhang Y-Q, Gamarra S, Garcia-Effron G et al (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6, e1000939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Sterling D, Reithmeier RAF, Casey JR (2001) A transport metabolon: functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894

    Article  CAS  PubMed  Google Scholar 

  181. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  CAS  PubMed  Google Scholar 

  182. Kasper D, Planells-Cases R, Fuhrmann JC et al (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Graves AR, Curran PK, Smith CL et al (2008) The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792

    Article  CAS  PubMed  Google Scholar 

  184. Venta PJ, Welty RJ, Johnson TM et al (1991) Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His → Tyr): complete structure of the normal human CA II gene. Am J Hum Gene 49:1082–1090

    CAS  Google Scholar 

  185. Meyers SN, McDaneld TG, Swist SL et al (2010) A deletion in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. BMC Genomics 11:337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Kornak U, Kasper D, Bösl MR et al (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  CAS  PubMed  Google Scholar 

  187. Schaller S, Henriksen K, Sveigaard C et al (2004) The chloride channel inhibitor N53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res 19:1144–1153

    Article  CAS  PubMed  Google Scholar 

  188. Thudium CS, Jensen VK, Karsdal MA et al (2012) Disruption of the V-ATPase functionality as a way to uncouple bone formation and resorption – a novel target for treatment of osteoporosis. Curr Protein Peptide Sci 13:141–151

    Article  CAS  Google Scholar 

  189. Kartner N, Yao Y, Li K et al (2010) Inhibition of osteoclast bone resorption by disrupting vacuolar H+-ATPase a3–B2 subunit interaction. J Biol Chem 285:37476–37490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Toyomura T, Oka T, Yamaguchi C et al (2000) Three subunit a isoforms of mouse vacuolar H+-ATPase: preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem 275:8760–8765

    Article  CAS  PubMed  Google Scholar 

  191. Bartkiewicz M, Hernando N, Reddy SV et al (1995) Characterization of the osteoclast vacuolar H(+)-ATPase B-subunit. Gene 160:157–164

    Article  CAS  PubMed  Google Scholar 

  192. Crasto GJ, Kartner N, Yao Y et al (2013) Luteolin inhibition of V-ATPase a3–d2 interaction decreases osteoclast resorptive activity. J Cell Biochem 114:929–941

    Article  CAS  PubMed  Google Scholar 

  193. Shin D-K, Kim M-H, Lee S-H et al (2012) Inhibitory effects of luteolin on titanium particle-induced osteolysis in a mouse model. Acta Biomater 8:3524–3531

    Article  CAS  PubMed  Google Scholar 

  194. Toro EJ, Ostrov DA, Wronski TJ et al (2012) Rational identification of enoxacin as a novel V-ATPase-directed osteoclast inhibitor. Curr Protein Peptide Sci 13:180–191

    Article  CAS  Google Scholar 

  195. Holliday LS, Lu M, Lee BS et al (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331–32337

    Article  CAS  PubMed  Google Scholar 

  196. Ostrov DA, Magis AT, Wronski TJ et al (2009) Identification of Enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem 52:5144–5151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Toro EJ, Zuo J, Ostrov DA et al (2012) Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis. J Biol Chem 287:17894–17904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Toro EJ, Zuo J, Guiterrez A et al (2013) Bis-enoxacin inhibits bone resorption and orthodontic tooth movement. J Dent Res 92:925–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Lin X, Han X, Kawai T et al (2011) Antibody to receptor activator of NF-κB ligand ameliorates T cell-mediated periodontal bone resorption. Infect Immun 79:911–917

    Article  CAS  PubMed  Google Scholar 

  200. Kawai T, Matsuyama T, Hosokawa Y et al (2006) B and T lymphocytes are the primary source of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol 169:987–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Utku N, Heinemann T, Tullius SG et al (1998) Prevention of acute allograft rejection by antibody targeting of TIRC7, a novel T cell membrane protein. Immunity 9:509–518

    Article  CAS  PubMed  Google Scholar 

  202. Jiang H, Chen W, Zhu G et al (2013) RNAi-mediated silencing of Atp6i and Atp6i haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS One 8, e58599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Feng S, Deng L, Chen W et al (2009) Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts. Biochem J 417:195–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  CAS  PubMed  Google Scholar 

  205. Yao J, Rotenberg D, Afsharifar A et al (2013) Development of RNAi methods for Peregrinus maidis, the corn planthopper. PLoS One 8, e70243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Baum JA, Bogaert T, Clinton W et al (2007) Control of colepteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  207. Chouabe C, Eyraud V, Da Silva P et al (2011) New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286

    Google Scholar 

  208. Muench SP, Rawson S, Eyraud V et al (2014) PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem 289:16399–16408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Zhang X-H, Li B, Hu Y-G et al (2014) The wheat E subunit of V-type H+-ATPase is involved in the plant response to osmotic stress. Int J Mol Sci 15:16196–16210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Sun-Wada G-H, Imai-Senga Y, Yamamoto A et al (2002) A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem 277:18098–18105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge research funding from the Canadian Institutes of Health Research (CIHR). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris F. Manolson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kartner, N., Manolson, M.F. (2016). The Vacuolar Proton ATPase (V-ATPase): Regulation and Therapeutic Targeting. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_20

Download citation

Publish with us

Policies and ethics