Skip to main content

The Plasma Membrane Ca2+ ATPases: Isoform Specificity and Functional Versatility

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

  • 1031 Accesses

Abstract

Plasma membrane Ca2+ ATPases are single polypeptides of about 1100–1250 amino-acid residues with a molecular mass of 125–140 kDa. They contain ten membrane spanning segments and their N- and C-terminals are both on the cytosolic side. The bulk of their mass is also in the cytoplasm and contains three major intracellular domains: the A (actuator), N (nucleotide-binding), and P (catalytic phosphorylation) domains. Four basic isoforms are encoded by four distinct genes, and their transcripts originated a huge number of alternative splicing variants that in most cases are also translated in the corresponding protein variants. Emerging evidence underlines that PMCA pumps, in addition to maintain resting cytosolic Ca2+ levels against a steep concentration gradient (i.e., nM versus mM), play a local control in specific sub-plasma membrane domains by tethering Ca2+-/calmodulin-dependent enzymes and reducing their activity, i.e., by decreasing Ca2+ concentration in the microenvironment where they are confined. This aspect of pump activity confers to PMCA pump a key role as signal transducer and justifies the existence of so many PMCA variants that could be specialized in tuning the activity of different partners with different Ca2+ sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  2. Pedersen P, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  3. Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946

    Article  CAS  PubMed  Google Scholar 

  4. Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2 + -transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K + - and other cation transport ATPases. J Biol Chem 263:8646–8657

    CAS  PubMed  Google Scholar 

  5. Verma AK, Filoteo AG, Stanford DR et al (1988) Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263:14152–14159

    CAS  PubMed  Google Scholar 

  6. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  CAS  PubMed  Google Scholar 

  7. Falchetto R, Vorherr T, Brunner J, Carafoli E (1991) The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266:2930–2936

    CAS  PubMed  Google Scholar 

  8. Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1:1613–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Elshorst B, Hennig M, Forsterling H et al (1999) NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38:12320–12332

    Article  CAS  PubMed  Google Scholar 

  10. Guerini D, Krebs J, Carafoli E (1984) Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem 259:15172–15177

    CAS  PubMed  Google Scholar 

  11. Tidow H, Poulsen LR, Andreeva A et al (2012) A bimodular mechanism of calcium control in eukaryotes. Nature 491:468–472

    Article  CAS  PubMed  Google Scholar 

  12. Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem 204:939–946

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann F, James P, Vorherr T, Carafoli E (1993) The C-terminal domain of the plasma membrane Ca2+ pump contains three high affinity Ca2+ binding sites. J Biol Chem 268:10252–10259

    CAS  PubMed  Google Scholar 

  14. James P, Vorherr T, Krebs J et al (1989) Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 264:8289–8296

    CAS  PubMed  Google Scholar 

  15. Salamino F, Sparatore B, Melloni E et al (1994) The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte. Cell Calcium 15:28–35

    Article  CAS  PubMed  Google Scholar 

  16. Monteith GR, Roufogalis BD (1995) The plasma membrane calcium pump--a physiological perspective on its regulation. Cell Calcium 18:459–470

    Article  CAS  PubMed  Google Scholar 

  17. Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165:101–109

    Article  CAS  PubMed  Google Scholar 

  18. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    CAS  PubMed  Google Scholar 

  19. Ortega C, Ortolano S, Carafoli E (2007) The plasma membrane calcium pump. In: Krebs J, Michalak M (eds) Calcium: a matter of life or death, vol 41. Springer, New York, NY, pp 179–197, Chapter 7

    Chapter  Google Scholar 

  20. Guerini D, Carafoli E (1999) The calcium pumps. In: Carafoli E, Klee C (eds) Calcium as a cellular regulators, vol 10. Oxford University Press, Oxford, pp 249–278

    Google Scholar 

  21. Preiano BS, Guerini D, Carafoli E (1996) Expression and functional characterization of isoforms 4 of the plasma membrane calcium pump. Biochemistry 35:7946–7953

    Article  CAS  PubMed  Google Scholar 

  22. Brini M, Coletto L, Pierobon N et al (2003) A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells. J Biol Chem 278:24500–24508

    Article  CAS  PubMed  Google Scholar 

  23. Niggli V, Adunyah ES, Penniston JT, Carafoli E (1981) Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256:395–401

    CAS  PubMed  Google Scholar 

  24. Ficarella R, Di Leva F, Bortolozzi M et al (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci U S A 104:1516–1521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Brini M, Di Leva F, Ortega CK et al (2010) Deletions and mutations in the acidic lipid-binding region of the plasma membrane Ca2+ pump: a study on different splicing variants of isoform 2. J Biol Chem 285:30779–30791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chicka MC, Strehler EE (2003) Alternative splicing of the first intracellular loop of plasma membrane Ca2+-ATPase isoform 2 alters its membrane targeting. J Biol Chem 278:18464–18470

    Article  CAS  PubMed  Google Scholar 

  27. Xiong Y, Antalffy G, Enyedi A, Strehler EE (2009) Apical localization of PMCA2w/b is lipid raft-dependent. Biochem Biophys Res Commun 384:32–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Paszty K, Caride AJ, Bajzer Z et al (2015) Plasma membrane Ca2+-ATPases can shape the pattern of Ca2+ transients induced by store-operated Ca2+ entry. Sci Signal 8:ra19

    Article  CAS  PubMed  Google Scholar 

  29. Hammes A, Oberdorf S, Strehler EE et al (1994) Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca2+-ATPase. FASEB J 8:428–435

    CAS  PubMed  Google Scholar 

  30. Brandt P, Ibrahim E, Bruns GA, Neve RL (1992) Determination of the nucleotide sequence and chromosomal localization of the ATP2B2 gene encoding human Ca2+-pumping ATPase isoform PMCA2. Genomics 14:484–487

    Article  CAS  PubMed  Google Scholar 

  31. De Jaegere S, Wuytack F, De Smedt H et al (1993) Alternative processing of the gene transcripts encoding a plasma-membrane and a sarco/endoplasmic reticulum Ca2+ pump during differentiation of BC3H1 muscle cells. Biochim Biophys Acta 1173:188–194

    Article  PubMed  Google Scholar 

  32. Guerini D, Garcia-Martin E, Gerber A et al (1999) The expression of plasma membrane Ca2+ pump isoforms in cerebellar granule neurons is modulated by Ca2+. J Biol Chem 274:1667–1676

    Article  CAS  PubMed  Google Scholar 

  33. Guerini D, Wang X, Li L et al (2000) Calcineurin controls the expression of isoform 4CII of the plasma membrane Ca2+ pump in neurons. J Biol Chem 275:3706–3712

    Article  CAS  PubMed  Google Scholar 

  34. Usachev YM, Toutenhoofd SL, Goellner GM et al (2001) Differentiation induces up-regulation of plasma membrane Ca2+-ATPase and concomitant increase in Ca2+ efflux in human neuroblastoma cell line IMR-32. J Neurochem 76:1756–1765

    Article  CAS  PubMed  Google Scholar 

  35. Ribiczey P, Tordai A, Andrikovics H et al (2007) Isoform-specific up-regulation of plasma membrane Ca2+ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium 42:590–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. DeMarco SJ, Strehler EE (2001) Plasma membrane Ca2+-atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276:21594–21600

    Article  CAS  PubMed  Google Scholar 

  37. Schuh K, Uldrijan S, Gambaryan S et al (2003) Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278:9778–9783

    Article  CAS  PubMed  Google Scholar 

  38. DeMarco SJ, Chicka MC, Strehler EE (2002) Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 277:10506–10511

    Article  CAS  PubMed  Google Scholar 

  39. Padanyi R, Xiong Y, Antalffy G et al (2010) Apical scaffolding protein NHERF2 modulates the localization of alternatively spliced plasma membrane Ca2+ pump 2B variants in polarized epithelial cells. J Biol Chem 285:31704–31712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Williams JC, Armesilla AL, Mohamed TM et al (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281:23341–23348

    Article  CAS  PubMed  Google Scholar 

  41. Holton M, Yang D, Wang W et al (2007) The interaction between endogenous calcineurin and the plasma membrane calcium-dependent ATPase is isoform specific in breast cancer cells. FEBS Lett 581:4115–4119

    Article  CAS  PubMed  Google Scholar 

  42. Armesilla AL, Williams JC, Buch MH et al (2004) Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem 279:31318–31328

    Article  CAS  PubMed  Google Scholar 

  43. Buch MH, Pickard A, Rodriguez A et al (2005) The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem 280:29479–29487

    Article  CAS  PubMed  Google Scholar 

  44. Rimessi A, Coletto L, Pinton P et al (2005) Inhibitory interaction of the 14-3-3{epsilon} protein with isoform 4 of the plasma membrane Ca2+-ATPase pump. J Biol Chem 280:37195–37203

    Article  CAS  PubMed  Google Scholar 

  45. Linde CI, Di Leva F, Domi T et al (2008) Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium 43:550–561

    Article  CAS  PubMed  Google Scholar 

  46. Penniston JT, Padanyi R, Paszty K et al (2014) Apart from its known function, the plasma membrane Ca2+ ATPase can regulate Ca2+ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 127(Pt 1):72–84

    Article  CAS  PubMed  Google Scholar 

  47. Schuh K, Cartwright EJ, Jankevics E et al (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  48. Mohamed TM, Oceandy D, Zi M et al (2011) Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286:41520–41529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cartwright EJ, Oceandy D, Austin C, Neyses L (2011) Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci 54:691–698

    Article  CAS  PubMed  Google Scholar 

  50. Cho YS, Go MJ, Kim YJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534

    Article  CAS  PubMed  Google Scholar 

  51. Hong KW, Go MJ, Jin HS et al (2010) Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens 24:367–372

    Article  CAS  PubMed  Google Scholar 

  52. LA Kurnellas MP, Li H, Deng L, Ehrlich DJ, Elkabes S (2007) Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci 34:178–188

    Article  CAS  PubMed  Google Scholar 

  53. Kurnellas MPNA, Shull GE, Elkabes S (2005) Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury. FASEB J 19:298–300

    CAS  PubMed  Google Scholar 

  54. Kozel PJ, Friedman RA, Erway LC et al (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696

    Article  CAS  PubMed  Google Scholar 

  55. Schultz JM, Yang Y, Caride AJ et al (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564

    Article  CAS  PubMed  Google Scholar 

  56. Zanni G, Calì T, Kalscheuerc V, Ottolini D, Barresia S, Lebrune N, Montecchi-Palazzi L, Chellye J, Bertini E, Brini M, Carafoli E (2012) A mutation of plasma membrane ca2+ atpase isoform 3 in a family with x-linked congenital cerebellar ataxia impairs ca2+ homeostasis. Proc Natl Acad Sci U S A 109:14514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Calì T, Lopreiato R, Shimony J et al (2015) A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1alpha mutations. J Biol Chem 290:16132

    Article  PubMed Central  PubMed  Google Scholar 

  58. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Ernesto Carafoli who has greatly contributed during the years to clarify the mechanisms of action and regulation of the plasma membrane Ca2+ pump and has trained us in this field of investigation with enthusiasm and passion. T.C is supported by the Scientific Independence of Young Researchers (SIR) grant (Bando SIR 2014 n. RBSI14C65Z) from the Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Brini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calì, T., Ottolini, D., Brini, M. (2016). The Plasma Membrane Ca2+ ATPases: Isoform Specificity and Functional Versatility. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_2

Download citation

Publish with us

Policies and ethics