Skip to main content

Functional and Structural Insights into Sarcolipin, a Regulator of the Sarco-Endoplasmic Reticulum Ca2+-ATPases

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Abstract

Sarcolipin (SLN), a transmembrane peptide from sarcoplasmic reticulum, is one of the major proteins involved in the muscle contraction/relaxation process. A number of enzymological studies have underlined its regulatory role in connection with the SERCA1a activity. Indeed, SLN folds as a unique transmembrane helix and binds to SERCA1a in a groove close to transmembrane helices M2, M6, and M9, as proposed initially by cross-linking experiments and recently detailed in the 3D structures of the SLN–Ca2+-ATPase complex. In addition, association of SLN with SERCAs may depend on its phosphorylation. SLN possesses a peculiar C-terminus (RSYQY) critical for the regulation of the ATPases. This luminal tail appears to be essential for addressing SLN to the ER membrane. Moreover, we recently demonstrated that some SLN isoforms are acylated on cysteine 9, a feature which remained unnoticed so far even in the recent crystal structures of the SLN–SERCA1a complex. The removal of the fatty acid chain was shown to increase the activity of the membrane-embedded Ca2+-ATPase by about 20 %. The exact functional and structural role of this post-translational modification is presently unknown. Recent data are in favor of a key regulator role of SLN in muscle-based thermogenesis in mammals. The possible link of SLN to heat production could occur through an uncoupling of the SERCA1a-mediated ATP hydrolysis from calcium transport. Considering those particular features and the fact that SLN is not expressed at the same level in different tissues, the role of SLN and its exact mechanism of regulation remain sources of interrogation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SRER:

Sarco-endoplasmic reticulumEndoplasmic reticulum

ER:

Endoplasmic reticulum

SERCA1a or 2a:

Sarco-Endoplasmic Reticulum Ca2+-ATPase isoform 1a or 2a

SLN:

Sarcolipin

hSLN:

Human isoform of SLN

rSLN:

Rabbit isoform of SLN

mSLN:

Mouse isoform of SLN

PLN:

Phospholamban

DDM:

n-Dodecyl-β-d-maltopyranoside

C12E8 :

Octaethylene glycol monododecyl ether

DOC:

Deoxycholate

SDS:

Sodium dodecyl sulfate

DPC:

n-Dodecylphosphocholine or Fos-choline-12

SEC:

Size exclusion chromatography

MS:

Mass spectrometry

MALDI-TOF:

Matrix-assisted laser desorption ionization—time of flight

NMR:

Nuclear magnetic resonance

ssNMR:

Solid state nuclear magnetic resonance

MD:

Molecular dynamics

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

EYPC:

Egg yolk phosphatidylcholine

EYPA:

Egg yolk phosphatic acid

RyR:

Ryanodine Receptor

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

References

  1. Wawrzynow A, Theibert JL, Murphy C et al (1992) Sarcolipin, the “proteolipid” of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide. Arch Biochem Biophys 298:620–623

    Article  CAS  PubMed  Google Scholar 

  2. MacLennan D, Yip C, Iles G et al (1972) Isolation of sarcoplasmic reticulum proteins. Cold Spring Harb Symp Quant Biol 37:469–477

    Article  Google Scholar 

  3. Odermatt A, Becker S, Khanna VK et al (1998) Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 273:12360–12369

    Article  CAS  PubMed  Google Scholar 

  4. Odermatt A, Taschner PE, Scherer SW et al (1997) Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 45:541–553

    Article  CAS  PubMed  Google Scholar 

  5. Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    Article  PubMed  Google Scholar 

  6. Kirchberber MA, Tada M, Katz AM (1975) Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum. Recent Adv Stud Cardiac Struct Metab 5:103–115

    CAS  PubMed  Google Scholar 

  7. Anderson DM, Anderson KM, Chang CL et al (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magny EG, Pueyo JI, Pearl FM et al (2013) Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341:1116–1120

    Article  CAS  PubMed  Google Scholar 

  9. Weintraub H, Davis R, Lockshon D et al (1990) MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc Natl Acad Sci U S A 87:5623–5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piette J, Bessereau JL, Huchet M et al (1990) Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature 345:353–355

    Article  CAS  PubMed  Google Scholar 

  11. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  CAS  PubMed  Google Scholar 

  12. Vangheluwe P, Schuermans M, Zador E et al (2005) Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species. Biochem J 389:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babu GJ, Bhupathy P, Carnes CA et al (2007) Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology. J Mol Cell Cardiol 43:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fajardo VA, Bombardier E, Vigna C et al (2013) Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS One 8, e84304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Uemura N, Ohkusa T, Hamano K et al (2004) Down-regulation of sarcolipin mRNA expression in chronic atrial fibrillation. Eur J Clin Invest 34:723–730

    Article  CAS  PubMed  Google Scholar 

  16. Shanmugam M, Molina CE, Gao S et al (2011) Decreased sarcolipin protein expression and enhanced sarco(endo)plasmic reticulum Ca2+ uptake in human atrial fibrillation. Biochem Biophys Res Commun 410:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vittorini S, Storti S, Parri MS et al (2007) SERCA2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects. Mol Med 13:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guglielmi V, Vattemi G, Gualandi F et al (2013) SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers. Mol Genet Metab 110:162–169

    Article  CAS  PubMed  Google Scholar 

  19. Block BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56:535–577

    Article  CAS  PubMed  Google Scholar 

  20. Smith WS, Broadbridge R, East JM et al (2002) Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem J 361:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Meis L (1998) Control of heat produced during ATP hydrolysis by the sarcoplasmic reticulum Ca(2+)-ATPase in the absence of a Ca2+ gradient. Biochem Biophys Res Commun 243:598–600

    Article  PubMed  Google Scholar 

  22. Mitidieri F, de Meis L (1999) Ca(2+) release and heat production by the endoplasmic reticulum Ca(2+)-ATPase of blood platelets. Effect of the platelet activating factor. J Biol Chem 274:28344–28350

    Article  CAS  PubMed  Google Scholar 

  23. de Meis L (2001) Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep 21:113–137

    Article  PubMed  Google Scholar 

  24. de Meis L (2001) Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Regulation by ADP. J Biol Chem 276:25078–25087

    Article  PubMed  Google Scholar 

  25. Lee AG (2002) A calcium pump made visible. Curr Opin Struct Biol 12:547–554

    Article  CAS  PubMed  Google Scholar 

  26. Mall S, Broadbridge R, Harrison SL et al (2006) The presence of sarcolipin results in increased heat production by Ca(2+)-ATPase. J Biol Chem 281:36597–36602

    Article  CAS  PubMed  Google Scholar 

  27. Stammers AN, Susser SE, Hamm NC et al (2015) The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol 19:1–12

    Article  CAS  Google Scholar 

  28. Bal NC, Maurya SK, Sopariwala DH et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18:1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bombardier E, Smith IC, Vigna C et al (2013) Ablation of sarcolipin decreases the energy requirements for Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases in resting skeletal muscle. FEBS Lett 587:1687–1692

    Article  CAS  PubMed  Google Scholar 

  30. Gillard EF, Otsu K, Fujii J et al (1991) A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11:751–755

    Article  CAS  PubMed  Google Scholar 

  31. Montigny C, Decottignies P, Le Marechal P et al (2014) S-palmitoylation and s-oleoylation of rabbit and pig sarcolipin. J Biol Chem 289:33850–33861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhupathy P, Babu GJ, Ito M et al (2009) Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J Mol Cell Cardiol 47:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gramolini AO, Trivieri MG, Oudit GY et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci U S A 103:2446–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Montaville P, Jamin N (2010) Determination of membrane protein structures using solution and solid-state NMR. Methods Mol Biol 654:261–282

    Article  CAS  PubMed  Google Scholar 

  35. Warschawski DE, Arnold AA, Beaugrand M et al (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974

    Article  CAS  PubMed  Google Scholar 

  36. Mascioni A, Karim C, Barany G et al (2002) Structure and orientation of sarcolipin in lipid environments. Biochemistry 41:475–482

    Article  CAS  PubMed  Google Scholar 

  37. Buck B, Zamoon J, Kirby TL et al (2003) Overexpression, purification, and characterization of recombinant Ca-ATPase regulators for high-resolution solution and solid-state NMR studies. Protein Expr Purif 30:253–261

    Article  CAS  PubMed  Google Scholar 

  38. Buffy JJ, Buck-Koehntop BA, Porcelli F et al (2006) Defining the intramembrane binding mechanism of sarcolipin to calcium ATPase using solution NMR spectroscopy. J Mol Biol 358:420–429

    Article  CAS  PubMed  Google Scholar 

  39. Buffy JJ, Traaseth NJ, Mascioni A et al (2006) Two-dimensional solid-state NMR reveals two topologies of sarcolipin in oriented lipid bilayers. Biochemistry 45:10939–10946

    Article  CAS  PubMed  Google Scholar 

  40. Shi L, Cembran A, Gao J et al (2009) Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 96:3648–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Simone A, Mote KR, Veglia G (2014) Structural dynamics and conformational equilibria of SERCA regulatory proteins in membranes by solid-state NMR restrained simulations. Biophys J 106:2566–2576

    Article  PubMed  PubMed Central  Google Scholar 

  42. Traaseth NJ, Ha KN, Verardi R et al (2008) Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase. Biochemistry 47:3–13

    Article  CAS  PubMed  Google Scholar 

  43. Hughes E, Clayton JC, Kitmitto A et al (2007) Solid-state NMR and functional measurements indicate that the conserved tyrosine residues of sarcolipin are involved directly in the inhibition of SERCA1. J Biol Chem 282:26603–26613

    Article  CAS  PubMed  Google Scholar 

  44. Shaw G, Morse S, Ararat M et al (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    CAS  PubMed  Google Scholar 

  45. Asahi M, Kurzydlowski K, Tada M et al (2002) Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs). J Biol Chem 277:26725–26728

    Article  CAS  PubMed  Google Scholar 

  46. Asahi M, Sugita Y, Kurzydlowski K et al (2003) Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc Natl Acad Sci U S A 100:5040–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. MacLennan DH, Asahi M, Tupling AR (2003) The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann N Y Acad Sci 986:472–480

    Article  CAS  PubMed  Google Scholar 

  48. Hughes E, Middleton DA (2003) Solid-state NMR reveals structural changes in phospholamban accompanying the functional regulation of Ca2+-ATPase. J Biol Chem 278:20835–20842

    Article  CAS  PubMed  Google Scholar 

  49. Douglas JL, Trieber CA, Afara M et al (2005) Rapid, high-yield expression and purification of Ca2+-ATPase regulatory proteins for high-resolution structural studies. Protein Expr Purif 40:118–125

    Article  CAS  PubMed  Google Scholar 

  50. Gorski PA, Glaves JP, Vangheluwe P et al (2013) Sarco(endo)plasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail. J Biol Chem 288:8456–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tupling AR, Asahi M, MacLennan DH (2002) Sarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile function. J Biol Chem 277:44740–44746

    Article  CAS  PubMed  Google Scholar 

  52. Pardi A, Wagner G, Wuthrich K (1983) Protein conformation and proton nuclear-magnetic-resonance chemical shifts. Eur J Biochem 137:445–454

    Article  CAS  PubMed  Google Scholar 

  53. Toyoshima C, Iwasawa S, Ogawa H et al (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495:260–264

    Article  CAS  PubMed  Google Scholar 

  54. Winther AM, Bublitz M, Karlsen JL et al (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495:265–269

    Article  CAS  PubMed  Google Scholar 

  55. Lund S, Orlowski S, de Foresta B et al (1989) Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem 264:4907–4915

    CAS  PubMed  Google Scholar 

  56. Montigny C, Arnou B, Champeil P (2010) Glycyl betaine is effective in slowing down the irreversible denaturation of a detergent-solubilized membrane protein, sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). Biochem Biophys Res Commun 391:1067–1069

    Article  CAS  PubMed  Google Scholar 

  57. Montigny C, Arnou B, Marchal E et al (2008) Use of glycerol-containing media to study the intrinsic fluorescence properties of detergent-solubilized native or expressed SERCA1a. Biochemistry 47:12159–12174

    Article  CAS  PubMed  Google Scholar 

  58. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  CAS  PubMed  Google Scholar 

  59. Akin BL, Hurley TD, Chen Z et al (2013) The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J Biol Chem 288:30181–30191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen Z, Akin BL, Stokes DL et al (2006) Cross-linking of C-terminal residues of phospholamban to the Ca2+ pump of cardiac sarcoplasmic reticulum to probe spatial and functional interactions within the transmembrane domain. J Biol Chem 28:14163–14172

    Article  CAS  Google Scholar 

  61. Chen Z, Stokes DL, Jones LR (2005) Role of leucine 31 of phospholamban in structural and functional interactions with the Ca2+ pump of cardiac sarcoplasmic reticulum. J Biol Chem 280:10530–10539

    Article  CAS  PubMed  Google Scholar 

  62. Chen Z, Stokes DL, Rice WJ et al (2003) Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. J Biol Chem 278:48348–48356

    Article  CAS  PubMed  Google Scholar 

  63. Jones LR, Cornea RL, Chen Z (2002) Close proximity between residue 30 of phospholamban and cysteine 318 of the cardiac Ca2+ pump revealed by intermolecular thiol cross-linking. J Biol Chem 277:28319–28329

    Article  CAS  PubMed  Google Scholar 

  64. Toyoshima C, Asahi M, Sugita Y et al (2003) Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase. Proc Natl Acad Sci U S A 100:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akin BL, Chen Z, Jones LR (2010) Superinhibitory phospholamban mutants compete with Ca2+ for binding to SERCA2a by stabilizing a unique nucleotide-dependent conformational state. J Biol Chem 285:28540–28552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bidwell P, Blackwell DJ, Hou Z et al (2011) Phospholamban binds with differential affinity to calcium pump conformers. J Biol Chem 286:35044–35050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berson AE, Young C, Morrison SL et al (1999) Identification and characterization of a myristylated and palmitylated serine/threonine protein kinase. Biochem Biophys Res Commun 259:533–538

    Article  CAS  PubMed  Google Scholar 

  68. Kurioka K, Nakagawa K, Denda K et al (1998) Molecular cloning and characterization of a novel protein serine/threonine kinase highly expressed in mouse embryo. Biochim Biophys Acta 1443:275–284

    Article  CAS  PubMed  Google Scholar 

  69. Ligos JM, Gerwin N, Fernandez P et al (1998) Cloning, expression analysis, and functional characterization of PKL12, a member of a new subfamily of ser/thr kinases. Biochem Biophys Res Commun 249:380–384

    Article  CAS  PubMed  Google Scholar 

  70. Stairs DB, Perry Gardner H, Ha SI et al (1998) Cloning and characterization of Krct, a member of a novel subfamily of serine/threonine kinases. Hum Mol Genet 7:2157–2166

    Article  CAS  PubMed  Google Scholar 

  71. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  CAS  PubMed  Google Scholar 

  72. Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78:921–947

    CAS  PubMed  Google Scholar 

  73. Tada M, Kadoma M (1989) Regulation of the Ca2+ pump ATPase by cAMP-dependent phosphorylation of phospholamban. Bioessays 10:157–163

    Article  CAS  PubMed  Google Scholar 

  74. Zhao W, Uehara Y, Chu G et al (2004) Threonine-17 phosphorylation of phospholamban: a key determinant of frequency-dependent increase of cardiac contractility. J Mol Cell Cardiol 37:607–612

    Article  CAS  PubMed  Google Scholar 

  75. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  CAS  PubMed  Google Scholar 

  76. Gramolini AO, Kislinger T, Asahi M et al (2004) Sarcolipin retention in the endoplasmic reticulum depends on its C-terminal RSYQY sequence and its interaction with sarco(endo)plasmic Ca(2+)-ATPases. Proc Natl Acad Sci U S A 101:16807–16812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gorski PA, Trieber CA, Ashrafi G et al (2015) Regulation of the sarcoplasmic reticulum calcium pump by divergent phospholamban isoforms in zebrafish. J Biol Chem 290:6777–6788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mayer EJ, McKenna E, Garsky VM et al (1996) Biochemical and biophysical comparison of native and chemically synthesized phospholamban and a monomeric phospholamban analog. J Biol Chem 271:1669–1677

    Article  CAS  PubMed  Google Scholar 

  79. Arkin IT, Adams PD, Brunger AT et al (1997) Structural perspectives of phospholamban, a helical transmembrane pentamer. Annu Rev Biophys Biomol Struct 26:157–179

    Article  CAS  PubMed  Google Scholar 

  80. Simmerman HK, Kobayashi YM, Autry JM et al (1996) A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem 271:5941–5946

    Article  CAS  PubMed  Google Scholar 

  81. Traaseth NJ, Verardi R, Torgersen KD et al (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci U S A 104:14676–14681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Verardi R, Shi L, Traaseth NJ et al (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci U S A 108(22):9101–9106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Becucci L, Foresti ML, Schwan A et al (2013) Can proton pumping by SERCA enhance the regulatory role of phospholamban and sarcolipin? Biochim Biophys Acta 1828:2682–2690

    Article  CAS  PubMed  Google Scholar 

  84. Becucci L, Guidelli R, Karim CB et al (2007) An electrochemical investigation of sarcolipin reconstituted into a mercury-supported lipid bilayer. Biophys J 93:2678–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Becucci L, Guidelli R, Karim CB et al (2009) The role of sarcolipin and ATP in the transport of phosphate ion into the sarcoplasmic reticulum. Biophys J 97:2693–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hellstern S, Pegoraro S, Karim CB et al (2001) Sarcolipin, the shorter homologue of phospholamban, forms oligomeric structures in detergent micelles and in liposomes. J Biol Chem 27630845–30852

    Google Scholar 

  87. Levy D, Seigneuret M, Bluzat A et al (1990) Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. J Biol Chem 265:19524–19534

    CAS  PubMed  Google Scholar 

  88. Clausen JD, Bublitz M, Arnou B et al (2014) SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation. EMBO J 32:3231–3243

    Article  CAS  Google Scholar 

  89. Jidenko M, Nielsen RC, Sorensen TL et al (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:11687–11691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marchand A, Winther AM, Holm PJ et al (2008) Crystal structure of D351A and P312A mutant forms of the mammalian sarcoplasmic reticulum Ca(2+) -ATPase reveals key events in phosphorylation and Ca(2+) release. J Biol Chem 283:14867–14882

    Article  CAS  PubMed  Google Scholar 

  91. Kimura Y, Kurzydlowski K, Tada M et al (1997) Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272:15061–15064

    Article  CAS  PubMed  Google Scholar 

  92. Butler J, Smyth N, Broadbridge R et al (2015) The effects of sarcolipin over-expression in mouse skeletal muscle on metabolic activity. Arch Biochem Biophys 569:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Charollais J, Van Der Goot FG (2009) Palmitoylation of membrane proteins (Review). Mol Membr Biol 26:55–66

    Article  CAS  PubMed  Google Scholar 

  94. Toyofuku T, Kurzydlowski K, Tada M et al (1993) Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem 268:2809–2815

    CAS  PubMed  Google Scholar 

  95. Toyofuku T, Kurzydlowski K, Tada M et al (1994) Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 269:3088–3094

    CAS  PubMed  Google Scholar 

  96. Toyofuku T, Kurzydlowski K, Tada M et al (1994) Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem 269:22929–22932

    CAS  PubMed  Google Scholar 

  97. Sopariwala DH, Pant M, Shaikh SA et al (2015) Sarcolipin overexpression improves muscle energetics and reduces fatigue. J Appl Physiol 118:1050–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maurya SK, Bal NC, Sopariwala DH et al (2015) Sarcolipin is a key determinant of basal metabolic rate and its overexpression enhances energy expenditure and resistance against diet induced obesity. J Biol Chem 24:840–849

    Google Scholar 

  99. Gamu D, Bombardier E, Smith IC et al (2014) Sarcolipin provides a novel muscle-based mechanism for adaptive thermogenesis. Exerc Sport Sci Rev 42:136–142

    Article  PubMed  Google Scholar 

  100. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  101. Crooks GE, Hon G, Chandonia JM et al (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  104. Bers DM, Patton CW, Nuccitelli R (2010) A practical guide to the preparation of Ca(2+) buffers. Methods Cell Biol 99:1–26

    Article  CAS  PubMed  Google Scholar 

  105. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  CAS  PubMed  Google Scholar 

  106. Lomize MA, Pogozheva ID, Joo H et al (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40(Database issue):D370–376

    Article  CAS  PubMed  Google Scholar 

  107. Pronk S, Pall S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33-38):27–38

    Google Scholar 

Download references

Acknowledgments

This work was supported by the French Infrastructure for Integrated Structural Biology (FRISBI) and by grants from the Agence Nationale pour la Recherche and the Ile de France region (Domaine d’Intérêt Majeur Maladies Infectieuses, DIM MALINF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Beswick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbot, T. et al. (2016). Functional and Structural Insights into Sarcolipin, a Regulator of the Sarco-Endoplasmic Reticulum Ca2+-ATPases. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_10

Download citation

Publish with us

Policies and ethics