Haar Wavelet-Based Approach to Locating Defects in Texture Images

  • Gintarė VaidelienėEmail author
  • Jonas Valantinas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 538)


In this paper, a novel Haar wavelet-based approach to extracting and locating surface defects in grey-level texture images is proposed. This new approach explores space localization properties of the discrete Haar wavelet transform (HT), performs task-oriented statistical analysis of well-defined non-intersecting subsets of HT spectral coefficients, and generates parameterized defect detection criteria with an installed additional capability to locate surface defects in defective texture images. The preliminary experimental analysis results demonstrating the use of the developed approach to the automated visual inspection of ceramic tiles, obtained from the real factory environment, are also presented.


Texture images Defect detection Discrete wavelet transforms Automated visual inspection 


  1. 1.
    Lebrun, V.: Quality Control of Ceramic Tiles by Machine Vision. Flaw Master 3000, Surface Inspection Ltd. (2001)Google Scholar
  2. 2.
    Kumar, A.: Neural network based detection of local textile defects. Pattern Recogn. 36, 1645–1659 (2003)CrossRefGoogle Scholar
  3. 3.
    Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 122 (2008)Google Scholar
  4. 4.
    Rebhi, A., Abid, S., Fnaeich, F.: Texture defect detection using local homogeneity and discrete cosine transform. World Appl. Sci. J. 31(9), 1677–1683 (2014)Google Scholar
  5. 5.
    Mishra, R., Shukla, D.: A survey on various defect detection. Int. J. Eng. Trends Technol. 10(13), 642–648 (2014)CrossRefGoogle Scholar
  6. 6.
    Haralick, R.M., Shanmugan, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3, 610–621 (1973)CrossRefGoogle Scholar
  7. 7.
    Latif-Amet, A., Ertüzün, A., Erçil, A.: An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image Vis. Comput. 18, 543–553 (2000)CrossRefGoogle Scholar
  8. 8.
    Huang, Y., Chan, K.: Texture decomposition by harmonics extraction from higher order statistics. IEEE Trans. Image Process. 13(1), 1–14 (2004)CrossRefGoogle Scholar
  9. 9.
    Gururajan, A., Sari-Sarraf, H., Hequet, E.F.: Statistical approach to unsupervised defect detection and multiscale localization in two texture images. Optical Eng. 47(2), 027202 (2008)CrossRefGoogle Scholar
  10. 10.
    Ghazini, M., Monadjemi, A., Jamshidi, K.: Defect detection of tiles using 2D wavelet transform and statistical features. World Acad. Sci. Eng. Technol. 3(1), 773–776 (2009)Google Scholar
  11. 11.
    Chen, J., Jain, A.K.: A structural approach to identify defects in textural images. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 29–32. Beijing (1988)Google Scholar
  12. 12.
    Wen, W., Xia, A.: Verifying edges for visual inspection purposes. Pattern Recogn. Lett. 20, 315–328 (1999)CrossRefGoogle Scholar
  13. 13.
    Mallick-Goswami, B., Datta, A.: Detecting defects in fabric with laser-based morphological image processing. Text. Res. J. 70, 758–762 (2000)CrossRefGoogle Scholar
  14. 14.
    Kumar, A., Pang, G.: Defect detection in textured materials using optimized filters. IEEE Trans. Syst. Man Cybern. B Cybern. 32(5), 553–570 (2002)CrossRefGoogle Scholar
  15. 15.
    Habib, H., Yousaf, M., Mohibullah, M.: Modified laws energy descriptor for inspection of ceramic tiles. In: National Conference on Emerging Technologies, pp. 137–140 (2004)Google Scholar
  16. 16.
    Chan, C., Pang, G.: Fabric defect detection by fourier analysis. IEEE Trans. Ind. Appl. 36(5), 1267–1276 (2000)CrossRefGoogle Scholar
  17. 17.
    Tsai, D., Huang, T.: Automated surface inspection for statistical textures. Image Vis. Comput. 21, 307–323 (2003)CrossRefGoogle Scholar
  18. 18.
    Kumar, A., Pang, G.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)CrossRefGoogle Scholar
  19. 19.
    Tsai, D., Lin, C., Huang, K.: Defect detection in coloured texture surfaces using Gabor filters. Imag. Sci. J. 53(1), 27–37 (2005)CrossRefGoogle Scholar
  20. 20.
    Conci, A., Proenca, C.: A system for real-time fabric inspection and industrial decision. In: 14th International Conference on Software Engineering and Knowledge Engineering, pp. 707–714. New York, USA (2002)Google Scholar
  21. 21.
    Li, S.: Markov Random Filed Modeling in Image Analysis. Springer, Berlin (2001)CrossRefGoogle Scholar
  22. 22.
    Xie, X., Mirmehdi, M.: Localising surface defects in random colour textures using multiscale texem analysis in image eigenchannels. In: 12th IEEE International Conference on Image Processing, pp. 1124–1127 (2005)Google Scholar
  23. 23.
    Xie, X., Mirmehdi, M.: TEXEM: texture exemplars for defect detection on random textured surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1454–1464 (2007)CrossRefGoogle Scholar
  24. 24.
    Fathi, A., Monadjemi, A.H., Mahmoudi, F.: Defect detection of tiles with combined undecimated wavelet transform & GLCM features. Int. J. Soft Comput. Eng. 2(2), 2231–2307 (2012)Google Scholar
  25. 25.
    Shahrood, I.: A novel approach for detecting defects of random textured tiles using gabour wavelet. World Appl. Sci. J. 7(9), 1114–1119 (2009)Google Scholar
  26. 26.
    Najafabadi, F.S., Pourghassem, H.: Corner defect detection based on dot product in ceramic tile images. In: 7th IEEE International Colloquium on Signal Processing and its Application, pp. 293–297 (2011)Google Scholar
  27. 27.
    Sharma, M., Kaur, G.: Integrated approach for defect detection in ceramic tiles. Int. J. Comput. Technol. 3(2), 259–262 (2012)Google Scholar
  28. 28.
    Meena, Y., Mittal, A.: Blobs and crack detection on plain ceramic tile surface. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(7), 647–653 (2013)Google Scholar
  29. 29.
    Sivabalan, K.N., Gnanadurai, D.: Detection of defects in digital texture images using segmentation. Int. J. Eng. Sci. Technol. (IJEST) 2(1), 5187–5191 (2010)Google Scholar
  30. 30.
    Sivabalan, K.N., Gnanadurai, D.: Efficient defect detection algorithm for grey level digital images using Gabor wavelet filter and Gaussian filter. Int. J. Eng. Sci. Technol. 3(4), 3195–3202 (2011)Google Scholar
  31. 31.
    Valantinas, J., Kančelkis, D., Valantinas, R., Viščiūtė, G.: Improving space localization properties of the discrete wavelet transform. Informatica 24(4), 657–674 (2013)CrossRefGoogle Scholar
  32. 32.
    Vaidelienė, G., Valantinas, J., Ražanskas, P.: On the use of discrete wavelets in implementing controllable defect detection system for texture images. Information Technology and Control (2015, to appear)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Applied MathematicsKaunas University of TechnologyKaunasLithuania

Personalised recommendations