Towards a Formal Model of Language Networks

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 538)


Multilayer networks and related concepts have been used for description and analysis of complex systems in many fields, such as for example biological, physical, social and information systems. In this paper we present the first steps towards defining a formal model for language networks representation - Multilayer Language Network (MLN) which is based on multilayer network formalism and which is suitable for representation, analysis and comparison of languages both in their entirety as well as in their various characteristics and complexity. The goal of this research is to define a universal formal model for languages, capturing various language levels (subsystems) and various language characteristics. As a starting point we apply standard network diagnostics on an MLN model for an English and Croatian text, considering word, syllable and grapheme language subsystems and various construction principles, and present obtained results.


Language Subsystems Multilayer Network Interlayer Edges Giant Connected Component (GCC) Hierarchy Perspective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported in part by the University of Rijeka under the LangNet project (


  1. 1.
    Antiqueira, L., Oliveira Jr, O.N., Costa, L.F., Nunes, V.: A complex network approach to text summarization. Inf. Sci. 179(5), 584–599 (2009)CrossRefGoogle Scholar
  2. 2.
    Ban, K., Ivakić, I., Meštrović, A.: A preliminary study of croatian language syllable networks. In: IEEE MIPRO Proceedings, pp. 1296–1300 (2013)Google Scholar
  3. 3.
    Barigozzi, M., Fagiolo, G., Garlaschelli, D.: Multinetwork of international trade: a commodity-specific analysis. Phys. Rev. E 81(4), 046104 (2010)CrossRefGoogle Scholar
  4. 4.
    Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Foundations of multidimensional network analysis. In: IEEE Advances in Social Networks Analysis and Mining (ASONAM), pp. 485–489 (2011)Google Scholar
  5. 5.
    Bianconi, G. Dorogovtsev, S.N., Mendes, J.F.F.: Mutually connected component of network of networks. arXiv preprint arXiv:1402.0215 (2014)
  6. 6.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. 10(3), 186–198 (2009)CrossRefGoogle Scholar
  7. 7.
    Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)CrossRefGoogle Scholar
  8. 8.
    Cong, J., Liu, H.: Approaching human language with complex networks. Phys. Life Rev. 11, 598–618 (2014)CrossRefGoogle Scholar
  9. 9.
    Costa, L.F., Oliveira Jr, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)CrossRefGoogle Scholar
  10. 10.
    De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3(4), 041022 (2013)Google Scholar
  11. 11.
    Dorogovtsev, S.N., Mendes, J.F.F.: Language as an evolving word web. Proc. R. Soc. Lond. B Biol. Sci. 268(1485), 2603–2606 (2001)CrossRefGoogle Scholar
  12. 12.
    Estrada, E., Gómez-Gardeñes, J.: Communicability reveals a transition to coordinated behavior in multiplex networks. Phys. Rev. E 89(4), 042819 (2014)CrossRefGoogle Scholar
  13. 13.
    Gao, J., Buldyrev, S.V., Stanley, E.H., Havlin, S.: Networks formed from interdependent networks. Nature Phys. 8(1), 40–48 (2012)CrossRefGoogle Scholar
  14. 14.
    Gao, J., Li, D., Havlin, S.: From a single network to a network of networks. Nat. Sci. Rev. 1(3), 346–356 (2014)CrossRefGoogle Scholar
  15. 15.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  16. 16.
    Kurant, M., Thiran, P.: Layered complex networks. PRL 96(13), 138701 (2006)CrossRefGoogle Scholar
  17. 17.
    Margan, D., Martinčić-Ipšić, S., Meštrović, A.: Preliminary report on the structure of croatian linguistic co-occurrence networks. In: 5th ITIS Proceedings, pp. 89–96 (2013)Google Scholar
  18. 18.
    Margan, D., Martinčić-Ipšić, S., Meštrović, A.: Network differences between normal and shuffled texts: case of croatian. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds.) Complex Networks V. SCI, vol. 549, pp. 275–283. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Masucci, A.P., Rodgers, G.J.: Network properties of written human language. Phys. Rev. E 74(2), 026102 (2006)CrossRefGoogle Scholar
  20. 20.
    Menichetti, G., Remondini, D., Panzarasa, P., Mondragón, R.J., Bianconi, G.: Weighted multiplex networks. PloS One 9(6), e97857 (2014)CrossRefGoogle Scholar
  21. 21.
    Morris, R.G., Barthelemy, M.: Transport on coupled spatial networks. Phys. Rev. Lett. 109(12), 128703 (2012)CrossRefGoogle Scholar
  22. 22.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  24. 24.
    Solé, R.V., Corominas-Murtra, B., Valverde, S., Steels, L.: Language networks: their structure, function, and evolution. Complexity 15(6), 20–26 (2010)CrossRefGoogle Scholar
  25. 25.
    Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. 107(31), 13636–13641 (2010)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Tadić, M.: Building the croatian dependency treebank: the initial stages. Suvremena Lingvistika 63(1), 85–92 (2007)Google Scholar
  28. 28.
    Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: the Penn treebank. Comput. Linguistics 19(2), 313–330 (1993)Google Scholar
  29. 29.
    Wang, P., Robins, G., Pattison, P., Lazega, E.: Exponential random graph models for multilevel networks. Soc. Netw. 35(1), 96–115 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RijekaRijekaCroatia
  2. 2.Department of InformaticsUniversity of RijekaRijekaCroatia

Personalised recommendations