Advertisement

Text Predictor for Lithuanian Language

  • Julius GelšvartasEmail author
  • Rimvydas Simutis
  • Rytis Maskeliūnas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 538)

Abstract

This paper describes the architecture of the open source text prediction package Presage. We trained the n-gram model used in the text predictor for Lithuanian language. The predictor was trained and evaluated using sixteen Lithuanian literature books. Each book was split into training and test sets containing 30 % and 70 % of words. The trained text predictor was integrated into a multifunctional user interface for disabled people to improve the text input speed.

Keywords

Text prediction Word prediction User interface 

Notes

Acknowledgement

This research was funded by a grant QUADRIBOT, from the Agency for Science, Innovation and Technology (MITA), Lithuania.

References

  1. 1.
    Anson, D., Moist, P., Przywara, M., Wells, H., Saylor, H., Maxime, H.: The effects of word completion and word prediction on typing rates using on-screen keyboards. Assistive Technol. 18(2), 146–154 (2006)CrossRefGoogle Scholar
  2. 2.
    Vescovi, M.: Soothsayer: un Sistema Multi-sorgente per la Predizione del Testo (Soothsayer: multi-source text prediction system), Milan (2004)Google Scholar
  3. 3.
    Gelšvartas, J., Simutis, R., Maskeliūnas, R.: Multifunctional user interface to control robotic arm for paralyzed people. In: Electrical and Control Technologies, p. 22 (2014)Google Scholar
  4. 4.
    Garay, N., Abascal, J.: Text prediction systems: a survey. Univ. Access Inf. Soc. 4(3), 188–203 (2006)CrossRefGoogle Scholar
  5. 5.
    Venkatagiri, H.: Efficiency of lexical prediction as a communication acceleration technique. Augmentative Altern. Commun. 9(3), 161–167 (1993)CrossRefGoogle Scholar
  6. 6.
    Trost, H., Matiasek, J., Baroni, M.: The language component of the FASTY text prediction system. Appl. Artif. Intell. 19(8), 743–781 (2005)CrossRefGoogle Scholar
  7. 7.
    Wandmacher, T., Antoine, J.Y.: Methods to integrate a language model with semantic information for a word prediction component (2008). arXiv:0801.4716
  8. 8.
    Van Den Bosch, A.: Scalable classification-based word prediction and confusible correction. Traitement Automatique des Langues 46(2), 39–63 (2006)Google Scholar
  9. 9.
    Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL, pp. 746–751 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julius Gelšvartas
    • 1
    Email author
  • Rimvydas Simutis
    • 1
  • Rytis Maskeliūnas
    • 2
  1. 1.Automation Department, Faculty of Electrical and Electronics EngineeringKaunas University of TechnologyKaunasLithuania
  2. 2.Department of Multimedia Engineering, Faculty of InformaticsKaunas University of TechnologyKaunasLithuania

Personalised recommendations