Advertisement

Weighted Classification Error Rate Estimator for the Euclidean Distance Classifier

  • Mindaugas GvardinskasEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 538)

Abstract

Error counting estimators are among the best known and most widely used error estimation techniques. Perhaps the best known subcategory of error-counting estimators are k-fold cross-validation methods. Like most other error estimation techniques, cross-validation methods are biased. One way to correct this bias is to use a weighted average of cross-validation and resubstitution estimators. In this paper we propose a new weighted error-counting classification error rate estimator designed specially for the Euclidean distance classifier. Experiments with real world and synthetic data sets show that resubstitution, repeated 2-fold cross-validation, leave-one-out, basic bootstrap and D-method are outperformed by the proposed weighted error rate estimator (in terms of root-mean-square error).

Keywords

Error estimation Classification Resubstitution Cross-validation Bootstrap 

References

  1. 1.
    Bache, K., Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml. School of Information and Computer Science, University of California, Irvine, CA (2015)
  2. 2.
    Braga-Neto, U., Dougherty, E.: Is cross-validation valid for small sample microarray classification? Bioinformatics 20(3), 374–380 (2004)CrossRefGoogle Scholar
  3. 3.
    Dougherty, E., Sima, C., Hua, J., Hanczar, B., Braga-Neto, U.: Performance of error estimators for classification. Curr. Bioinf. 5(1), 53–67 (2010)CrossRefGoogle Scholar
  4. 4.
    Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Efron, B.: Estimating the error rate of a prediction rule: improvement on cross-validation. J. Am. Stat. Assoc. 78(382), 316–331 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Efron, B., Tibshirani, R.: Improvements on cross-validation: the 632+ bootstrap method. J. Am. Stat. Assoc. 92(438), 548–560 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)CrossRefGoogle Scholar
  8. 8.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995)Google Scholar
  9. 9.
    Krzanowski, W.J., Hand, D.J.: Assessing error rate estimators: the leaving-one-out reconsidered. Aust. J. Stat. 39(1), 35–46 (1997)CrossRefGoogle Scholar
  10. 10.
    Lachenbruch, P., Mickey, R.: Estimation of error rates in discriminant analysis. Technometrics 10(1), 1–11 (1968)MathSciNetCrossRefGoogle Scholar
  11. 11.
    McLachlan, G.J.: A note on the choice of a weighting function to give an efficient method for estimating the probability of misclassification. Pattern Recogn. 9, 147–149 (1977)CrossRefGoogle Scholar
  12. 12.
    Raudys, S.: Statistical and Neural Classifiers, An Integrated Approach to Design. Springer, London (2001)CrossRefGoogle Scholar
  13. 13.
    Rodriguez, J.D., Perez, A., Lozano, J.A.: A general framework for the statistical analysis of the sources of variance for classification error estimators. Pattern Recogn. 46, 855–864 (2013)CrossRefGoogle Scholar
  14. 14.
    Sima, C., Dougherty, E.: Optimal convex error estimators for classification. Pattern Recogn. 39(6), 1763–1780 (2006)CrossRefGoogle Scholar
  15. 15.
    Smith, C.: Some examples of discrimination. Ann. Eugenics 18, 272–282 (1947)MathSciNetGoogle Scholar
  16. 16.
    Toussaint, G., Sharpe, P.: An efficient method for estimating the probability of misclassification applied to a problem in medical diagnosis. Comput. Biol. Med. 4, 269–278 (1975)CrossRefGoogle Scholar
  17. 17.
    Zollanvari, A., Braga-Neto, U., Dougherty, E.: Analytic study of performance of error estimators for linear discriminant analysis. IEEE Trans. Signal Process. 59(9), 4238–4255 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of System AnalysisVytautas Magnus UniversityKaunasLithuania

Personalised recommendations