Advertisement

QoS-Based Web Services Composition Optimization with an Extended Bat Inspired Algorithm

  • Serial Rayene BoussaliaEmail author
  • Allaoua Chaoui
  • Aurélie Hurault
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 538)

Abstract

The QoS-Based Web services composition optimisation problem is an NP-Hard problem. So far, solving such a problem consists on finding its optimal solution, while optimizing an objective function using the QoS as an optimization criteria. In this paper, we propose an approach based on the use of a new Extended Bat Inspired Algorithm to deal with the QoS-Based Web Services composition optimization problem. The Bat Inspired Algorithm has the advantage of providing a very quick convergence at a very early stage by switching from exploration to exploitation. This makes it an efficient algorithm. The originality of the proposed approach is the designing and the built of the composition solutions by adjusting the main parameters of the algorithm. Then, to compare potential generated solutions, different QoS attributes are considered and aggregated at the complete composition level. A prototype has been realized and applied to a text translation case study. The results of experimentation are very encouraging and show that the approach is highly efficient in terms of optimality rate and running time.

Keywords

Quality of service(QoS) Web service Web services composition Optimization methods Bat Inspired Algorithm 

References

  1. 1.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Shen, J., Yong, J.: A Survey on bio-inspired algorithms for web service composition. In: Proceedings of the International Conference on Computer Supported Cooperative Work in Design, pp. 569–574. IEEE (2012)Google Scholar
  3. 3.
    Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient QoS-aware service composition. In: proceedings of the International World Wide Web Conference Committee, pp. 881–890. ACM (2009)Google Scholar
  4. 4.
    Parejo, J., Fernandez, P., Rueda, S., Cortes, A.: QoS-aware services composition using tabu search and hybrid genetic algorithms. Actas de los Talleres de las Jornadas de Ingeniera del Software y Bases de Datos 2(1) (2008)Google Scholar
  5. 5.
    Wang, J., Hou, Y.: Optimal web service selection based on multi- objective genetic algorithm. In: Proceedings of the International Symposium on Computational Intelligence and Design. Vol. 1, pp. 553–556. IEEE Computer Society (2008)Google Scholar
  6. 6.
    Tang, M., Ai, L.: A hybrid genetic algorithm for the optimal constrained web service selection. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)Google Scholar
  7. 7.
    Li, J., Yu, B., Chen, W.: Research on intelligence optimization of web service composition for QoS. In: Liu, C., Wang, L., Yang, A. (eds.) ICICA 2012, Part II. CCIS, vol. 308, pp. 227–235. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. Applied Condition Monitoring, vol. 1, pp. 63–70. Springer, ACM, Heidelberg (2015) Google Scholar
  9. 9.
    Boussalia, S.R., Chaoui, A.: Optimizing QoS-based web services composition by using quantum inspired cuckoo search algorithm. In: Awan, I., Younas, M., Franch, X., Quer, C. (eds.) MobiWIS 2014. LNCS, vol. 8640, pp. 41–55. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Gustavo, F., Casati, H., Kuno, H., Machiraju, V.: Web Services: Concepts, Architecture and Applications. Springer, Heidelberg (2004) zbMATHGoogle Scholar
  11. 11.
    Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  12. 12.
    Lecue, F., Mehandjiev, N.: Seeking quality of web service composition in a semantic dimension. IEEE Trans. Knowl. Data Eng. 23(6), 942–959 (2011)CrossRefGoogle Scholar
  13. 13.
    Holland, J.H.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks. IEEE (1995)Google Scholar
  15. 15.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  16. 16.
    Layeb, A.: A novel quantum inspired cuckoo search for knapsack problems. Int. J. Bio Inspired Comput. 3(5), 297–305 (2011)CrossRefGoogle Scholar
  17. 17.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Nakamura, R.Y.M., Pereira, L.A.M., Costa, K.A., Rodrigues, D., Papa, J.P., Yang, X.S.: BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Institute of Electrical and Electronics Engineers (IEEE) August 2012Google Scholar
  19. 19.
    Yang, X.S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio Inspired Comput. 5(3), 141 (2013)CrossRefGoogle Scholar
  20. 20.
    Bhuvaneswari, A., Karpagam, G.: QoS considerations for a semantic web service composition. Eur. J. Sci. Res. 65(3), 403–415 (2011)Google Scholar
  21. 21.
    Claro, D.B., Albers, P., Hao, J.: Selecting web services for optimal composition. In: Proceedings of the International workshop on semantic and dynamic Web processes, pp. 32–45 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Serial Rayene Boussalia
    • 1
    Email author
  • Allaoua Chaoui
    • 1
  • Aurélie Hurault
    • 2
  1. 1.MISC LaboratoryConstantine 2 UniversityConstantineAlgeria
  2. 2.IRIT LaboratoryUniversity of ToulouseToulouseFrance

Personalised recommendations