Advertisement

The LO Sequencing Problem and Its Solution Using Meta-Programming-Based Approach

  • Vytautas Štuikys
  • Renata BurbaitėEmail author
  • Kristina Bespalova
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 538)

Abstract

This paper presents a meta-programming-based approach to solve learning objects (LOs) sequencing task. The task is dealt with by introducing a framework, formal analysis of the problem. The approach includes: (i) task formalization, (ii) description of the method and algorithm, (iii) implementation and case study for computer science education. The approach enables the automatic generation and flexible adaptation on demand and has been approved in the real teaching setting. Some characteristics and future work are indicated.

Keywords

Learning object Generative learning object Learning objects sequencing Metadata Meta-programming 

References

  1. 1.
    Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Barker, P., Campbell, L.M.: Metadata for learning materials: an overview of existing standards and current developments. Technol. Instr. Cogn. Learn. 7, 225–243 (2010)Google Scholar
  3. 3.
    Boyle, T.: Layered learning design: towards an integration of learning design and learning object perspectives. Comput. Educ. 54(3), 661–668 (2010)CrossRefGoogle Scholar
  4. 4.
    Brusilovsky, P., Vassileva, J.: Course sequencing techniques for large-scale web-based education. In. J. Continuing Eng. Educ. Life Long Learn. 13(1), 75–94 (2003)CrossRefGoogle Scholar
  5. 5.
    Changuel, S., Labroche, N., Bouchon-Meunier, B.: Resources sequencing using automatic prerequisite-outcome annotation. ACM Trans. Intell. Syst. Technol. (TIST) 6(1), 6 (2015)Google Scholar
  6. 6.
    Churchill, D.: Towards a useful classification of learning objects. Educ. Tech Res. 55, 479–497 (2007)CrossRefGoogle Scholar
  7. 7.
    Damasevicius, R., Stuikys, V.: Specification and generation of learning object sequences for e-learning using sequence feature diagrams and metaprogramming techniques. In: Ninth IEEE International Conference on Advanced Learning Technologies, ICALT 2009, pp. 572–576. IEEE (2009)Google Scholar
  8. 8.
    Farrell, R., Liburd, S.D., Thomas, J.C.: Dynamic assembly of learning objects. In: WWW 2004, pp. 162–169, New York, USA (2004)Google Scholar
  9. 9.
    Gibbons, A.S., Nelson, J., Richards, R.: The nature and origin of instructional objects. In: The Instructional Use of Learning Objects. Association for Educational Communications and Technology, Bloomington (2000)Google Scholar
  10. 10.
    Grubišić, A., Stankov, S., Žitko, B.: Adaptive courseware model for intelligent e-learning systems. In: 2nd International Conference on Computing, E-Learning and Emerging Technologies (ICCEET 2014) (2014)Google Scholar
  11. 11.
    Harden, R.M., Gessner, I.H., Gunn, M., Issenberg, S.B., Pringle, S.D., Stewart, A.: Creating an e-learning module from learning objects using a commentary or ‘personal learning assistant’. Med. Teach. 33(4), 286–290 (2011)CrossRefGoogle Scholar
  12. 12.
    Idris, N., Yusof, N., Saad, P.: Adaptive course sequencing for personalization of learning path using neural network. Int. J. Adv. Soft Comput. Appl. 1(1), 49–61 (2009)Google Scholar
  13. 13.
    Karampiperis, P., Sampson, D.: Adaptive learning resources sequencing in educational hypermedia systems. Educ. Technol. Soc. 8(4), 128–147 (2005)Google Scholar
  14. 14.
    Limongelli, C., Sciarrone, F., Temperini, M., Vaste, G.: The lecomps5 framework for personalized web-based learning: a teacher’s satisfaction perspective. Comput. Hum. Behav. 27(4), 1310–1320 (2011)CrossRefGoogle Scholar
  15. 15.
    Littlejohn, A., Falconer, I., Mcgill, L.: Characterising effective eLearning resources. Comput. Educ. 50(3), 757–771 (2008)CrossRefGoogle Scholar
  16. 16.
    Marcos, L., Martínez, J.J., Gutierrez, J.A.: Swarm intelligence in e-learning: a learning object sequencing agent based on competencies. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 17–24 (2008)Google Scholar
  17. 17.
    Morales, R., Aguera, A.S.: Dynamic sequencing of learning objects. In: Proceedings of ICALT, pp. 502–506 (2002)Google Scholar
  18. 18.
    Nath, J.: E-learning methodologies and its trends in modern information technology. J. Glob. Res. Comput. Sci. 3(4), 48–52 (2012)Google Scholar
  19. 19.
    Navarro, S.M.B., Graf, S., Fabregat, R., Méndez, N.D.D.: Searching for and positioning of contextualized learning objects. Int. Rev. Res. Open Distrib. Learn. 13(5), 76–101 (2012)Google Scholar
  20. 20.
    Nilsson, M., Johnston, P., Naeve, A., Powell, A.: The future of learning object metadata interoperability. In: Learning Objects: Standards, Metadata, Repositories, and LCMS, pp. 255–313. Information Science Press, California (2007)Google Scholar
  21. 21.
    Nikolopoulos, G., Solomou, G., Pierrakeas, C., Kameas, A.: Modeling the characteristics of a learning object for use within e-learning applications. In: Proceedings of the Fifth Balkan Conference in Informatics, pp. 112–117. ACM (2012)Google Scholar
  22. 22.
    Queirós, R., Leal, P.J., Campos, J.: Sequencing educational resources with Seqins. Comput. Sci. Inf. Syst. 11(4), 1479–1497 (2014)CrossRefGoogle Scholar
  23. 23.
    Roy, D., Sarkar, S., Ghose, S.: A Comparative study of learning object metadata, learning material repositories, metadata annotation and an automatic metadata annotation tool. Adv. Semant. Comput. 2, 103–126 (2010)Google Scholar
  24. 24.
    Sakarkar, G., Deshpande, S.P., Thakare, V.M.: Intelligent online e-learning systems: a comparative study. Int. J. Comput. Appl. 56(4), 21–25 (2012)Google Scholar
  25. 25.
    Stuikys, V., Brauklyte, I., Damasevicius, R.: How to integrate generative learning objects into teaching and learning processes (2009)Google Scholar
  26. 26.
    Verbert, K., Duval, E.: Towards a global architecture for learning objects: a comparative analysis of learning object content models. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications, vol. 2004, no. 1, pp. 202–208 (2004)Google Scholar
  27. 27.
    Wiley, D., Waters, S.: Scoping and sequencing educational resources and speech acts: a unified design framework for learning objects and educational discourse. Interdisc. J. E-Learning Learn. Objects 1(1), 143–150 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vytautas Štuikys
    • 1
  • Renata Burbaitė
    • 1
    Email author
  • Kristina Bespalova
    • 1
  1. 1.Kaunas University of TechnologyKaunasLithuania

Personalised recommendations