Skip to main content

Mathematical Modeling

  • Chapter
  • First Online:

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

The governing equations of the helicopter rotor blade enabling piezoceramic-axial, bending, and shear actuation are derived in this chapter and an outline of the aeroelastic analysis used in this book is given. A background on piezoelectric materials used in this book is also provided. Section 2.1 begins with an introduction to piezoelectric materials and Sect. 2.2 explains the piezoceramic actuation concept. Section 2.3 provides an introduction to terminology used in the helicopter field. In Sect. 2.4, structural modeling is explained. Section 2.5 explains the aerodynamic model used for the aeroelastic analysis. Section 2.6 presents the blade and hub loads. Section 2.7 explains the aeroelastic analysis of a rotor. Section 2.8 gives the summary of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Durr, J., Schmidt, U., Zaglauer, W.: On the integration of piezoceramic actuators in composite structures for aerospace applications. J. Intell. Mater. Syst. Struct. 10, 880–889 (1999)

    Article  Google Scholar 

  2. Srinivasan, A., McFarland, M.: Smart Structures: Analysis and Design. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Crawley, E.: Intelligent structures for aerospace: a technology overview and assessment. J. Am. Inst. Aeronaut. Astronaut. 32(8), 1689–1699 (1994)

    Google Scholar 

  4. Loewy, R.: Recent developments in smart structures with aeronautical applications. Smart Mater. Struct. 6(5), 11–42 (1997)

    Article  Google Scholar 

  5. Park, S., Shrout, T.: Relaxor based ferroelectric single crystals for electromechanical actuators. Mater. Res. Innov. 1, 20–25 (1997)

    Article  Google Scholar 

  6. Liu, S., Ren, W., Mukherjee, B.: The piezoelectric shear strain coefficient of \({<}111{>}\) piezocrystals. Appl. Phys. Lett. 83(14), 2886–2888 (2003)

    Google Scholar 

  7. Crawley, E., Anderson, E.: Detailed models of piezoceramic actuation of beams. In: Proceedings of the 30th AIAA/ASMI/ASCH/AHS/ASC Structures, Structural Dynamics Conference, Washington, DC (1989)

    Google Scholar 

  8. Hong, C., Chopra, I.: Modeling and validation of induced strain actuation of composite coupled plates. J. Am. Inst. Aeronaut. Astronaut. 37(3), 372–377 (1999)

    Article  Google Scholar 

  9. Chen, W., Saleeb, A.: Constitutive Equations for Engineering Materials: Elasticity and Modeling, vol. 1. Wiley-Interscience, New York (1952)

    MATH  Google Scholar 

  10. Hodges, D., Dowell, E.: Non-linear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. Technical report NASA TN D-7818 (1974)

    Google Scholar 

  11. Epps, J., Chandra, R.: The natural frequencies of rotating composite beams with tip sweep. J. Am. Helicopter Soc. 41, 29–36 (1996)

    Google Scholar 

  12. Ganguli, R., Chopra, I., Weller, W.: Comparison of calculated vibratory rotor hub loads with experimental data. J. Am. Helicopter Soc. 43, 312–318 (1998)

    Article  Google Scholar 

  13. Chopra, I., Sivaneri, T.: Aeroelastic stability of rotor blades using finite element analysis. Technical report NASA CR 166389 (1982)

    Google Scholar 

  14. Leishman, J.G., Beddoes, T.S.: A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method. In: Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington, DC, June, pp. 243–265 (1986)

    Google Scholar 

  15. Leishman, J.G., Beddoes, T.S.: A semi-empirical model for dynamic stall. J. Am. Helicopter Soc. 34(3), 3–17 (1989); Leishman, J.G.: Principles of Helicopter Aerodynamics. Cambridge University Press, New York (2000)

    Google Scholar 

  16. Drees, J.M.: A theory of air flow through rotors and its application to some helicopter problems. J. Helicopter Assoc. G. B. 3(2), 79–104 (1949)

    Google Scholar 

  17. Bagai, A., Leishman, J.G.: Rotor free-wake modeling using a pseudo-implicit technique—including comparisons with experimental data. J. Am. Helicopter Soc. 40(3), 29–41 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganguli, R., Thakkar, D., Viswamurthy, S.R. (2016). Mathematical Modeling. In: Smart Helicopter Rotors. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-24768-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24768-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24766-3

  • Online ISBN: 978-3-319-24768-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics