• Ranjan GanguliEmail author
  • Dipali Thakkar
  • Sathyamangalam Ramanarayanan Viswamurthy
Part of the Advances in Industrial Control book series (AIC)


Rotorcraft are widely used in civilian, military, and commercial applications due to their ability to perform remarkable maneuvers such as hover, vertical takeoff/landing, and low-speed flight. Such unique abilities set them apart from their fixed-wing counterparts. However, these advantages come at the cost of complex aeroelastic phenomena, instabilities, and severe vibration and noise issues. High noise levels greatly restrict the use of helicopters over densely populated and urban areas. High vibration levels directly lead to passenger discomfort and high maintenance costs. This chapter provides the necessary background for the smart rotor concepts. The chapter is organized as follows. Helicopter vibration problem is explained in Sect. 1.1. Section 1.2 explains the passive control of vibration. Section 1.3 explains the active control of vibration. Section 1.4 presents actuation of trailing-edge flap. Section 1.5 explains the induced shear strain actuation. Section 1.6 presents the optimal placement of actuators in active structures. Section 1.7 explains the actuator hysteresis model. Section 1.8 explains the active twist rotor. Suppression of dynamic stall-induced vibration is explained in Sect. 1.9. Section 1.10 gives the organization of the book.


Rotor Blade Pitching Moment Main Rotor Helicopter Rotor Active Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Friedmann, P.P.: Renaissance of aeroelasticity and its future. J. Aircr. 36(1), 105–121 (1999)Google Scholar
  2. 2.
    Bielawa, R.: Rotary Wing Structural Dynamics and Aeroelasticity. AIAA, Washington (1992)Google Scholar
  3. 3.
    Reichert, G.: Helicopter vibration control—a survey. Vertica 5(1), 1–20 (1981)MathSciNetGoogle Scholar
  4. 4.
    Loewy, R.G.: Helicopter vibrations: a technological perspective. J. Am. Helicopter Soc. 29(4), 4–30 (1984)Google Scholar
  5. 5.
    Viswanathan, S.P., Myers, A.W.: Reduction in helicopter vibration through control of hub impedance. J. Am. Helicopter Soc. 25(4), 3–12 (1980)Google Scholar
  6. 6.
    Schuett, E.: Application of passive rotor isolation for alleviation of rotor induced vibration. J. Am. Helicopter Soc. 14(2), 34–48 (1969)Google Scholar
  7. 7.
    Braun, D.: Development of antiresonant force isolators for helicopter vibration reduction. J. Am. Helicopter Soc. 27(4), 37–44 (1982)Google Scholar
  8. 8.
    Smollen, L.E., Marshall, P., Gabel, R.: Active vibration isolation of helicopter rotors. J. Am. Helicopter Soc. 7(2), 42–55 (1962)Google Scholar
  9. 9.
    Kuczynski, W.A., Madden, J.: The RSRA active isolation/rotor balance system. J. Am. Helicopter Soc. 25(2), 17–25 (1980)Google Scholar
  10. 10.
    Amer, K.B., Neff, J.R.: Verical-plane pendulum absorbers for minimizing helicopter vibratory loads. J. Am. Helicopter Soc. 19(4), 44–48 (1974)Google Scholar
  11. 11.
    Paul, W.F.: Development and evaluation of the main rotor bifilar absorber. In: Proceedings of the 25th Annual National Forum of the American Helicopter Society, Washington, D.C., USA (1969)Google Scholar
  12. 12.
    Friedmann, P.P., Shanthakumaran, P.: Optimum design of rotor blades for vibration reduction in forward flight. J. Am. Helicopter Soc. 29(4), 70–80 (1984)Google Scholar
  13. 13.
    Celi, R., Friedmann, P.P.: Structural optimization with aeroelastic constraints of rotor blades with straight and swept tips. AIAA J. 28(5), 928–936 (1990)Google Scholar
  14. 14.
    Chattopadhyay, A., Walsh, J.L., Riley, M.F.: Integrated aerodynamic load/dynamic optimization of helicopter rotor blades. J. Aircr. 28(1), 58–65 (1991)Google Scholar
  15. 15.
    Chattopadhyay, A., McCarthy, T.R.: A multidisciplinary optimization approach for vibration reduction in helicopter rotor blades. Comput. Math. Appl. 25(2), 59–72 (1993)MathSciNetGoogle Scholar
  16. 16.
    Ganguli, R., Chopra, I.: Aeroelastic optimization of a helicopter rotor with composite coupling. J. Aircr. 32(6), 1326–1334 (1995)Google Scholar
  17. 17.
    Ganguli, R., Chopra, I.: Aeroelastic optimization of a helicopter rotor to reduce vibration and dynamic stresses. J. Aircr. 33(4), 808–815 (1996)Google Scholar
  18. 18.
    Yuan, K.A., Friedmann, P.P.: Structural optimization for vibratory loads reduction of composite helicopter rotor blades with advanced geometry tips. J. Am. Helicopter Soc. 43(3), 246–256 (1998)Google Scholar
  19. 19.
    Miura, H.: Applications of numerical optimization methods in helicopter rotor design problems—a survey. Vertica 9(2), 141–154 (1985)Google Scholar
  20. 20.
    Glaz, B., Friedmann, P.P., Liu, L., Bain, J., Sankar, L.: A surrogate-based approach to reduced-order dynamic stall modeling. J. Am. Helicopter Soc. 57(2), 1–9 (2012)Google Scholar
  21. 21.
    Friedmann, P.P.: Helicopter vibration reduction using structural optimizationwith aeroelastic/multidisciplinary constraints—a survey. J. Aircr. 28(1), 8–21 (1991)Google Scholar
  22. 22.
    Celi, R.: Recent applications of design optimization to rotorcraft—a survey. J. Aircr. 36(1), 176–189 (1999)Google Scholar
  23. 23.
    Ganguli, R.: Survey of recent developments in rotorcraft design optimization. J. Aircr. 41(3), 493–510 (2004)MathSciNetGoogle Scholar
  24. 24.
    Murugan, S., Ganguli, R.: Aeroelastic stability enhancement and vibration suppressionin a composite helicopter rotor. J. Aircr. 42(4), 1013–1024 (2005)Google Scholar
  25. 25.
    Murugan, S., Ganguli, R., Harursampat, D.: Surrogate based design optimizationof composite airfoil cross-section for helicopter vibration reduction. Aeronaut. J. 116(1181), 709–726 (2012)Google Scholar
  26. 26.
    Ganguli, R.: Optimal design of composite structures: a historical review. J. Indian Inst. Sci. 93(4), 557–570 (2013)Google Scholar
  27. 27.
    Kumar, D., Cesnik, C.E.S.: New strategy for designing composite rotor blades with active flaps. J. Intell. Mater. Syst. Struct. 53(2), 436–448 (2014)Google Scholar
  28. 28.
    Lim, S., Park, S., Kim, K.: AI vibration control of high-speed rotor systems using electrorheological fluid. J. Sound Vib. 284(3–5), 685–703 (2005)Google Scholar
  29. 29.
    Wang, J., Meng, G.: Study of the vibration control of a rotor system using a magnetorheological fluid damper. J. Vib. Control 11(2), 263–276 (2005)zbMATHGoogle Scholar
  30. 30.
    Zhu, C.: A disk-type magneto-rheological fluid damper for rotor system vibration control. J. Sound Vib. 283(3–5), 1051–1069 (2005)Google Scholar
  31. 31.
    Yong, C., Zimcik, D.G., Wickramasinghe, V.K., Nitzsche, F.: Development of the smart spring for active vibration control of helicopter blades. J. Intell. Mater. Syst. Struct. 15(1), 37–47 (2004)Google Scholar
  32. 32.
    Chen, Y., Wickramasinghe, V., Zimcik, D.: Smart spring impedance control algorithm for helicopter blade harmonic vibration suppression. J. Vib. Control. 11(4), 543–560 (2005)zbMATHGoogle Scholar
  33. 33.
    Nitzsche, F., Oxley, G.: Smart spring control of vibration and noise in helicopter blades. In: Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA-2005-2270, Austin, Texas, USA (2005)Google Scholar
  34. 34.
    Anusonti-Inthra, P., Gandhi, F.: Optimal control of helicopter vibration through cyclic variations in blade root stiffness. Smart Mater. Struct. 10(1), 86–95 (2001)Google Scholar
  35. 35.
    Staple, A.E.: An evaluation of active control of structural response as a means of reducing helicopter vibration. In: Proceedings of the 15th European Rotorcraft Forum, Amsterdam, The Netherlands, pp. 51.1-51.18 (1989)Google Scholar
  36. 36.
    Chiu, T., Friedmann, P.P.: An analytical model for ACSR approach to vibration reduction in helicopter rotor- flexible fuselage system. Aeronaut. J. 101(1009), 399–408 (1997)Google Scholar
  37. 37.
    Pearson, J.T., Goodall, R.M., Lyndon, I.: Active control of helicopter vibration. Comput. Control Eng. J. 5(5), 277–284 (1994)Google Scholar
  38. 38.
    Payne, P.R.: Higher harmonic rotor control. Aircr. Eng. 30(354), 222–226 (1958)Google Scholar
  39. 39.
    Arcidiacono, P.: Theoretical performance of a helicopter having second and higher harmonic feathering control. J. Am. Helicopter Soc. 6(2), 8–19 (1961)Google Scholar
  40. 40.
    Molusis, J.A., Hammond, C.E., Cline, J.H.: A unified approach to optimal design of adaptive and gain scheduled controllers to achieve minimum helicopter rotor vibration. J. Am. Helicopter Soc. 28(2), 9–18 (1983)Google Scholar
  41. 41.
    Davis, M.W.: Refinement and evaluation of helicopter real-time self adaptive active vibration controller algorithm. NASA CR-3821 (1984)Google Scholar
  42. 42.
    Robinson, L.H., Friedmann, P.P.: Aeroelastic simulation of higher harmonic control NASA. CR-4623 (1994)Google Scholar
  43. 43.
    Nguyen, K., Chopra, I.: Application of higher harmonic control to hingeless rotor systems. Vertica 14, 545–556 (1990)Google Scholar
  44. 44.
    Hammond, C.E.: Wind tunnel results showing rotor vibratory loads reduction using higher harmonic blade pitch. J. Am. Helicopter Soc. 28(1), 10–15 (1983)Google Scholar
  45. 45.
    Shaw, J., Albion, N., Hanker, E.J., Teal, R.S.: Higher harmonic control: wind tunnel demonstration of fully effective vibratory hub force suppression. J. Am. Helicopter Soc. 34(1), 14–25 (1989)Google Scholar
  46. 46.
    Wood, E.R., Powers, R., Cline, J.H., Hammond, C.E.: On developing and flight testing a higher harmonic control system. J. Am. Helicopter Soc. 30(1), 3–20 (1985)Google Scholar
  47. 47.
    Polychroniadis, M., Achache, M.: Higher harmonic control: flight tests of an experimental system on SA 349 research Gazelle. In: Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington, D.C., USA, pp. 811–820 (1986)Google Scholar
  48. 48.
    Miao, W., Kottapalli, S.B.R., Frye, H.M.: Flight demonstration of higher harmonic control (HHC) on S-76. In: Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington, D.C., USA, pp. 777–791 (1986)Google Scholar
  49. 49.
    Mura, R., Ghalamzan Esfahani, A.M., Lovera, M.: Robust harmonic control for helicopter vibration attenuation. In: American Control Conference (ACC), pp. 3850–3855 (2014)Google Scholar
  50. 50.
    Kretz, M.: Research in multicyclic and active control of rotary-wings. Vertica 1(1/2), 95–105 (1976)Google Scholar
  51. 51.
    Ham, N.D.: Helicopter gust alleviation, attitude stabilization and vibration alleviation using individual blade control through a conventional swashplate. In: Proceedings of the 11th European Rotorcraft Forum, London, UK, pp. 75.1–75.5 (1985)Google Scholar
  52. 52.
    Ham, N.D.: Helicopter individual blade control research at MIT 1977–1985. Vertica 11(1/2), 109–122 (1987)Google Scholar
  53. 53.
    Richter, P., Eisbrecher, H.D., Kloppel, V.: Design and first tests of individual blade control actuators. In: Proceedings of the 16th European Rotorcraft Forum, Glasgow, Scotland, UK (1990)Google Scholar
  54. 54.
    Wilbur, M.L., Mirick, P.H., Yeager, W.T., Langston, C.W., Cesnik, C.E.S., Shin, S.: Vibratory loads reduction testing of the NASA/Army/MIT active twist rotor. J. Am. Helicopter Soc. 47(2), 123–133 (2002)Google Scholar
  55. 55.
    Friedmann, P.P., de Terlizzi, M., Myrtle, T.F.: New developments in vibration reduction with actively controlled trailing edge flaps. Math. Comput. Model. 33(10–11), 1055–1083 (2001)zbMATHGoogle Scholar
  56. 56.
    Jacklin, S.A., Leyland, J.A., Blaas, A.: Full-scale wind tunnel investigation of a helicopter individual blade control system. In: Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA-1993-1361, La Jolla, CA, USA (1993)Google Scholar
  57. 57.
    Jacklin, S.A., Blaas, A., Teves, D., Kube, R.: Reduction of helicopter BVI noise, vibration and power consumption through individual blade control. In: Proceedings of the 51st Annual Forum of the American Helicopter Society, Fort Worth, Texas, USA (1995)Google Scholar
  58. 58.
    Arnold, U.T.P., Muller, M., Richter, P.: Theoretical and experimental prediction of individual blade control benefits. In: Proceedings of the 23rd European Rotorcraft Forum, Dresden, Germany (1997)Google Scholar
  59. 59.
    Morbitzer, D., Arnold, U.T.P., Muller, M.: Vibration and noise reduction through individual blade control: experimental and theoretical results. In: Proceedings of the 24th European Rotorcraft Forum, Marseille, France (1998)Google Scholar
  60. 60.
    Schimke, D., Arnold, U.T.P., Kube, R.: Individual blade root control demonstration—evaluation of recent flight tests. In: Proceedings of the 54th Annual Forum of the American Helicopter Society, Washington, D.C., USA (1998)Google Scholar
  61. 61.
    Chopra, I.: Review of state of art of smart structures and integrated systems. J. Am. Inst. Aeronaut. Astronaut. 40(11), 2145–2187 (2002)Google Scholar
  62. 62.
    Chopra, I.: Status of application of smart structures technology to rotorcraft systems. J. Am. Helicopter Soc. 45(4), 228–252 (2000)Google Scholar
  63. 63.
    Chopra, I., Sirohi, J.: Smart Structures Theory, vol. 35. Cambridge University Press, Cambridge (2013)Google Scholar
  64. 64.
    Irschik, H.: A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 24(1), 5–11 (2002)Google Scholar
  65. 65.
    Kamath, G.M., Hurt, M.K., Wereley, N.M.: Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers. Smart Mater. Struct. 5(5), 576 (1996)Google Scholar
  66. 66.
    Wereley, N. (ed.).: Magnetorheology: Advances and Applications, vol. 6. Royal Society of Chemistry, Cambridge (2013)Google Scholar
  67. 67.
    Wereley, N.M., Pang, L., Kamath, G.M.: Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J. Intell. Mater. Syst. Struct. 9(8), 642–649 (1998)Google Scholar
  68. 68.
    Singh, H.J., Wereley, N.M.: Adaptive magnetorheological shock isolation mounts for drop-induced impacts. Smart Mater. Struct. 22(12), 122001 (2013)Google Scholar
  69. 69.
    Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267–1323 (1998)Google Scholar
  70. 70.
    Kazanci, M.: A review of polymeric smart materials for biomedical applications. Mater. Technol. 18(2), 87–93 (2003)Google Scholar
  71. 71.
    Valliappan, S., Qi, K.: Review of seismic vibration control using smart materials. Struct. Eng. Mech. 11(6), 617–636 (2000)Google Scholar
  72. 72.
    Trindade, A., Benjeddou, A.: Hybrid active-passive damping treatments using viscoelastic and piezoelectric materials: review and assessment. J. Vib. Control 8(6), 699–745 (2002)zbMATHGoogle Scholar
  73. 73.
    Park, S., Shrout, T.: Ultrahigh strain and piezoelectric behavior in relaxer ferroelectric single crystals. J. Appl. Phys. 4(82), 1804–1811 (1997)Google Scholar
  74. 74.
    Bergami, L.: Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps. Springer, New York (2014)Google Scholar
  75. 75.
    Zhang, J., Smith, E., Wang, K.: Active-passive hybrid optimization of rotor blades with trailing edge flaps. J. Am. Helicopter Soc. 49(1), 54–65 (2004)Google Scholar
  76. 76.
    Fenn, R., Downer, J., Bushko, D., Gondhalekar, V., Ham, N.: Terfenol-D driven flaps for helicopter vibration reduction. Smart Mater. Struct. 5(1), 49–57 (1996)Google Scholar
  77. 77.
    Hassan, A., Sankar, L., Tadghighi, H.: Effects of leading and trailing edge flaps on the aerodynamics of airfoil/vortex interactions. J. Am. Helicopter Soc. 39(2), 35–46 (1994)Google Scholar
  78. 78.
    Li, N., Balas, M.J.: Aeroelastic control of wind turbine blade using trailing edge flap. Wind Eng. 38(5), 549–560 (2014)Google Scholar
  79. 79.
    Malgaca, L., Al-Qahtani, H., Sunar, M.: Vibration control of rotating blades using root-embedded piezoelectric materials. Arab. J. Sci. Eng. 40(5), 1487–1495 (2015)Google Scholar
  80. 80.
    Spangler, R.L., Hall, S.R.: Piezoelectric actuators for helicopter rotor control. In: Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA-1990-1076, Long Beach, California, USA, 2–4 April 1990Google Scholar
  81. 81.
    Hall, S.R., Prechtl, E.F.: Development of a piezoelectric servo flap for helicopter rotor control. Smart Mater. Struct. 5(1), 26–34 (1996)Google Scholar
  82. 82.
    Samak, D.K., Chopra, I.: A feasibility study to build a smart rotor: trailing edge flap actuation. SPIŠs North American Symposium on Smart Structures and Materials, Albuquerque, New Mexico, USA (1993)Google Scholar
  83. 83.
    Walz, C., Chopra, I.: Design and testing of a helicopter rotor model with smart trailing edge flaps. In: Proceedings of the 35th AIAA/ASME Structures, Structural Dynamics, and Materials Conference, Adaptive Structures Forum, No. AIAA-1994-1767- CP, Hilton Head, South Carolina, USA, pp. 309–319 (1994)Google Scholar
  84. 84.
    Ben-Zeev, O., Chopra, I.: Advances in the development of an intelligent helicopter rotor employing smart trailing-edge flaps. Smart Mater. Struct. 5(1), 11–25 (1996)Google Scholar
  85. 85.
    Koratkar, N.A., Chopra, I.: Analysis and testing of a Froude-scaled helicopter rotor with piezoelectric bender actuated trailing edge flaps. J. Intell. Mater. Syst. Struct. 8(7), 555–570 (1997)Google Scholar
  86. 86.
    Koratkar, N.A., Chopra, I.: Wind tunnel testing of a Mach-scaled rotor model with trailing-edge flaps. Smart Mater. Struct. 10(1), 1–14 (2001)Google Scholar
  87. 87.
    Fulton, M.V., Ormiston, R.A.: Hover testing of a small-scale rotor with on-blade elevons. In: Proceedings of the 53rd Annual Forum of the American Helicopter Society, Virginia Beach, Virginia, USA, April 29–May 1 1997Google Scholar
  88. 88.
    Fulton, M.V., Ormiston, R.A.: Small-scale rotor experiments with on-blade elevons to reduce vibratory loads in forward flight. In: Proceedings of the 54th Annual Forum of the American Helicopter Society, Washington, D.C., pp. 433–450 (1998)Google Scholar
  89. 89.
    Samak, D.K., Chopra, I.: Desing of high force, high displacement actuators for helicopter rotors. Smart Mater. Struct. 5(1), 58–67 (1996)Google Scholar
  90. 90.
    Chandra, R., Chopra, I.: Actuation of trailing edge flap in a wing model using piezostack device. J. Intell. Mater. Syst. Struct. 9(10), 847–853 (1998)Google Scholar
  91. 91.
    Prechtl, E.F., Hall, S.R.: Design of a high-efficiency discrete servo-flap actuator for helicopter rotor control. In: Regelbrugge, M.E. (ed.) Proceedings of SPIE, vol. 3041, pp. 158–182 (1997)Google Scholar
  92. 92.
    Hall, S.R., Prechtl, E.F.: Preliminary testing of a Mach-scaled active rotor blade with a trailing-edge servo flap. In: Wereley, N.M. (ed.) Proceedings of SPIE, vol. 3668, pp. 14–21 (1999)Google Scholar
  93. 93.
    Lee, T., Chopra, I.: Design and spin testing of an active trailing edge flap actuated with piezostacks. In: Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA-1999-1502, St.Louis, Missouri, USA, 12–15 April 1999Google Scholar
  94. 94.
    Lee, T., Chopra, I.: Development and validation of a refined piezostack-actuated trailing-edge flap actuator for a helicopter rotor. In: Wereley, N.M. (ed.) Proceedings of SPIE, vol. 3668, pp. 22–36 (1999)Google Scholar
  95. 95.
    Straub, F.K., Ngo, H.T., Anand, V., Domzalski, D.B.: Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades. Smart Mater. Struct. 10(1), 25–34 (2001)Google Scholar
  96. 96.
    Janker, P., Kleoppel, V., Hermle, T., Lorkowski, T., Storm, S., Christmann, M., Wettemann, M.: Development and evaluation of a hybrid piezoelectric actuator for advanced flap control technology. In: Proceedings of the 25th European Rotorcraft Forum, Rome, Italy, 14–16 September 1999Google Scholar
  97. 97.
    Shaner, M.C., Chopra, I.: Design and testing of a piezostack-actuated leadingedge flap. In: Wereley, N.M. (ed.) Proceedings of SPIE, vol. 3668, pp. 50–59 (1999)Google Scholar
  98. 98.
    Wang, Q., Xu, B., Kugel, V., Cross, L.: Characteristics of shear mode piezoelectric actuators. IEEE Trans. Ultrason. Ferroelectr. 767–770 (1996)Google Scholar
  99. 99.
    Benjeddou, A., Trindade, M., Ohayon, R.: New shear actuated smart structure beam finite element. J. Am. Inst. Aeronaut. Astronaut. 37, 378–383 (1999)Google Scholar
  100. 100.
    Trindade, M.A., Benjeddou, A.: Finite element homogenization technique for the characterization of d15 shear piezoelectric macro-fibre composites. Smart Mater. Struct. 20(7), 075012(2011)Google Scholar
  101. 101.
    Berik, P., Benjeddou, A.: Piezoelectric d15 shear response-based torsion actuation mechanism: an experimental benchmark and its 3D finite element simulation. Int. J. Smart Nano Mater. 1(3), 224–235 (2010)Google Scholar
  102. 102.
    Kranz, B., Benjeddou, A., Drossel, W.G.: Numerical and experimental characterizationsof longitudinally polarized piezoelectric d 15 shear macro-fiber composites. Acta Mech. 224(11), 2471–2487 (2013)zbMATHGoogle Scholar
  103. 103.
    Viswamurthy, S.R., Ganguli, R.: An optimization approach to vibration reduction in helicopter rotors with multiple active trailing edge flaps. Aerosp. Sci. Technol. 8(3), 185–194 (2004)zbMATHGoogle Scholar
  104. 104.
    Lim, K.B.: Method for optimal actuator and sensor placement for large flexible structures. J. Guid. Control Dyn. 15(1), 49–57 (1992)Google Scholar
  105. 105.
    Dhingra, A.K., Lee, B.H.: Optimal placement of actuators in actively controlled structures. Eng. Optim. 23(2), 99–118 (1994)Google Scholar
  106. 106.
    Varadan, V.V., Kim, J., Varadan, V.K.: Optimal placement of piezoelectric actuators for active noise control. AIAA J. 35(3), 526–533 (1997)Google Scholar
  107. 107.
    Bhargava, A., Chaudhry, Z., Liang, C., Rogers, C.A.: Experimental verification of optimal actuator location and configuration based on actuator power factor. J. Intell. Mater. Syst. Struct. 6(3), 411–418 ((1995)Google Scholar
  108. 108.
    Wang, Q., Wang, C.M.: Optimal placement and size of piezoelectric patches on beams from the controllability perspective. Smart Mater. Struct. 9(4), 558–567 (2000)Google Scholar
  109. 109.
    Liang, C., Sun, F.P., Rogers, C.A.: Determination of design of optimal actuator location and configuration based on actuator power factor. J. Intell. Mater. Syst. Struct. 6(4), 456–464 (1995)Google Scholar
  110. 110.
    Kang, Y.K., Park, H.C., Hwang, W., Han, K.S.: Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams. AIAA J. 34(9), 1921–1926 (1996)zbMATHGoogle Scholar
  111. 111.
    Liang, C., Sun, F.P., Rogers, C.A.: Determination of design of optimal actuator location and configuration based on actuator power factor. J. Intell. Mater. Syst. Struct. 6(4), 456–464 (1995)Google Scholar
  112. 112.
    Li, Y., Onoda, J., Minesugi, K.: Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression. Acta Astronaut. 50(6), 335–341 (2002)Google Scholar
  113. 113.
    Damaren, C.J.: Optimal location of collocated piezo-actuator/sensor combinations in spacecraft box structures. Smart Mater. Struct. 12(3), 494–499 (2003)Google Scholar
  114. 114.
    Wang, S.Y., Quek, S.T., Ang, K.K.: Optimal placement of piezoelectric sensor/actuator pairs for vibration control of composite plates. In: Rao, V.S. (ed.) Proceedings of SPIE, vol. 4693, p. 461471 (2002)Google Scholar
  115. 115.
    Dutta, R., Ganguli, R., Mani, V.: Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Mater. Struct. 20(10), 105018 (2011)Google Scholar
  116. 116.
    Lee, I., Han, J.H.: Optimal placement of piezoelectric actuators in intelligent structures using genetic algorithms. In: Gobin, P.F., Tatibouet, J. (eds.) Proceedings of SPIE, vol. 2779, pp. 872–875 (1996)Google Scholar
  117. 117.
    Han, J.H., Lee, I.: Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Mater. Struct. 8(2), 257–267 (1999)MathSciNetGoogle Scholar
  118. 118.
    Sadri, A.M., Wright, J.R., Wynne, R.J.: Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms. Smart Mater. Struct. 8(4), 490–498 (1999)Google Scholar
  119. 119.
    Sheng, L., Kapania, R.K.: Genetic algorithms for optimization of piezoelectric actuator locations. AIAA J. 39(9), 1818–1822 (2001)Google Scholar
  120. 120.
    Li, Q.S., Liu, D.K., Tang, J., Zhang, N., Tam, C.M.: Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms. J. Sound Vib. 270(4–5), 611–624 (2004)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Kapania, R.K., Sheng, L.: Toward more effective genetic algorithms for the optimization of piezoelectric actuator locations. AIAA J. 40(6), 1246–1250 (2002)Google Scholar
  122. 122.
    Liu, D.K., Yang, Y.L., Li, Q.S.: Optimum positioning of actuators in tall buildings using genetic algorithm. Comput. Struct. 81(32), 2823–2827 (2003)Google Scholar
  123. 123.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)Google Scholar
  124. 124.
    Ganguli, R.: Engineering Optimization: A Modern Approach. Universities Press, Boca Raton (2012)Google Scholar
  125. 125.
    Heverly, D.E., Wang, K.W., Smith, E.C.: An optimal actuator placement methodology for active control of helicopter airframe vibrations. J. Am. Helicopter Soc. 46(4), 251–261 (2001)Google Scholar
  126. 126.
    Padula, S.L., Kincaid, R.K.: Optimization strategies for sensor and actuator placement. NASA/TM-1999-209126 (1999)Google Scholar
  127. 127.
    Ge, P., Jouaneh, M.: Modeling hysteresis in piezoceramic actuators. Precis. Eng. 17(3), 211–221 (1995)Google Scholar
  128. 128.
    Hughes, D., Wen, J.T.: Preisach modeling of piezoceramic and shape memory alloy hysteresis. Smart Mater. Struct. 6(3), 287–300 (1997)Google Scholar
  129. 129.
    Kurdila, A.J., Li, J., Strganac, T., Webb, G.: Nonlinear control methodologies for hysteresis in PZT actuated on-blade elevons. J. Aerosp. Eng. 16(4), 167–176 (2003)Google Scholar
  130. 130.
    Muir, E.R., Liu, L., Friedmann, P.P., Kumar, D.: Effect of piezoceramic actuator hysteresis on helicopter vibration and noise reduction. J. Guid. Control Dyn. 35(4), 1299–1311 (2012)Google Scholar
  131. 131.
    Ganguli, R., Mallick, R., Bhat, M.S.: An experimental and numerical study of piezoceramic actuator hysteresis in helicopter active vibration control. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2013). 0954410013478254Google Scholar
  132. 132.
    Krasnoselskii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1983)Google Scholar
  133. 133.
    Mayergoyz, I.D.: Hysteresis models from the mathematical and control theory points of view. J. Appl. Phys. 57(1), 3803–3805 (1985)Google Scholar
  134. 134.
    Doong, T., Mayergoyz, I.D.: On numerical implementation of hysteresis models. IEEE Trans. Magn. 21(5), 1853–1855 (1985)Google Scholar
  135. 135.
    Sreeram, P.N., Naganathan, N.G.: Hysteresis prediction for a piezoceramic material system. In: Proceedings of 1993 ASME Winter Annual Meeting, New Orleans, Louisiana, USA, pp. 35–42 (1993)Google Scholar
  136. 136.
    Yu, Y., Naganathan, N., Dukkipati, R.: Preisach modeling of hysteresis for piezoceramic actuator system. Mech. Mach. Theory. 37(1), 49–59 (2002)MathSciNetzbMATHGoogle Scholar
  137. 137.
    Hu, H., Mrad, R.B.: A discrete-time compensation algorithm for hysteresis in piezoceramic actuators. Mech. Syst. Signal Process. 18(1), 169–185 (2004)Google Scholar
  138. 138.
    Natale, C., Velardi, F., Visone, C.: Identification and compensation of Preisach hysteresis models for magnetostrictive actuators. Phys. B. 306(1–4), 161–165 (2001)Google Scholar
  139. 139.
    Park, Y.W., Lim, M.C., Kim, D.Y.: Control of a magnetostrictive actuator with feedforwarding inverted hysteresis. J. Magn. Magn. Mater. 272–276, pp. e1757–e1759, Supplement 1 (2004)Google Scholar
  140. 140.
    Mayergoyz, I.D.: Dynamic Preisach models of hysteresis. IEEE Trans. Magn. 24(6), 2925–2927 (1988)Google Scholar
  141. 141.
    Bertotti, G.: Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans. Magn. 28(5), 2599–2601 (1992)Google Scholar
  142. 142.
    Song, D., Li, C.J.: Modeling of piezo actuatorsŠs nonlinear and frequency dependent dynamics. Mechatronics 94, 391–410 (1999)Google Scholar
  143. 143.
    Dang, X., Tan, Y.: Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation. Phys. B. 365(1–4), 173–184 (2005)Google Scholar
  144. 144.
    Nitzsche, F., Breitbach, E.: Using adaptive structures to attenuate rotary wing aeroelastic response. J. Aircr. 31(5), 1178–1188 (1994)Google Scholar
  145. 145.
    Chen, P., Chopra, I.: Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements. Smart Mater. Struct. 5, 35–48 (1996)Google Scholar
  146. 146.
    Chen, P., Chopra, I.: Hover testing of smart rotor with induced-strain actuation of blade twist. J. Am. Inst. Aeronaut. Astronaut. 35(1), 6–16 (1997)Google Scholar
  147. 147.
    Chen, P., Chopra, I.: Wind tunnel test of a smart rotor model with individual blade twist control. J. Intell. Mater. Syst. Struct. 8(5), 414–423 (1997)Google Scholar
  148. 148.
    Derham, R., Hagood, N.: Rotor design using smart materials to actively twist blades. Presented at 52nd Annual forum, American Helicopter Society, Washington, DC, USA (1996)Google Scholar
  149. 149.
    Bernhardm, A., Chopra, I.: Analysis of a bending-torsion coupled actuator for a smart rotor with active blade tips. Smart Mater. Struct. 10(1), 35–52 (1998)Google Scholar
  150. 150.
    Chandra, R., Chopra, I.: Structural modeling of composite beams with induced strain actuations. J. Am. Inst. Aeronaut. Astronaut. 31(9), 1692–1701 (1993)zbMATHGoogle Scholar
  151. 151.
    Vlasov, V.: Thin-Walled Elastic Beams. Wiley-Interscience, New York (1961)Google Scholar
  152. 152.
    Rodgers, J., Hagood, N.: Design, manufacture, and testing of an integral twist actuated rotor blade. Presented at 8th International Conference on Adaptive Structures and Technology, Wakayama, Japan (1997)Google Scholar
  153. 153.
    Wilkie, W.K., Wilbur, M.L., Mirick, P.H., Cesnik, C.E.S., Shin, S.J.: Aeroelastic analysis of the NASA/Army/MIT active twist rotor. In: Proceedings of the 55th Annual Forum of the American Helicopter Society, Montreal, Canada, May 25–27, pp. 545–557 (1999)Google Scholar
  154. 154.
    Johnson, W.: Rotorcraft aerodynamics models for a comprehensive analysis. Presented at 54th Annual forum, American Helicopter Society, Washington, DC, USA (1998)Google Scholar
  155. 155.
    Shin, S., Cesnik, C., Hall, S.R.: Nasa/army/mit active twist rotor closed loop control test for vibration reduction. In: Proceedings of 29th European Rotorcraft Forum, Friedrichshafen, Germany (2003)Google Scholar
  156. 156.
    Chattopadhyay, A., Lin, Q., Gu, H.: Vibration reduction in rotor blades using active composite box beam. J. Am. Inst. Aeronaut. Astronaut. 38(7), 1125–1131 (2000)Google Scholar
  157. 157.
    Chattopadhyay, A., Gu, H., Lin, Q.: Modeling of smart composite box beams with nonlinear induced strain. J. Compos. 30(B), 603–612 (1999)Google Scholar
  158. 158.
    Cesnik, C., Shin, S.: On the twist performance of a multiple-cell active helicopter blade. Smart Mater. Struct. 10, 53–61 (1999)Google Scholar
  159. 159.
    Cesnik, C., Shin, S.: On the modeling of integrally actuated helicopter blades. Int. J. Solids Struct. 38(10–13), 1765–1789 (2001)zbMATHGoogle Scholar
  160. 160.
    Cesnik, C., Shin, S.: Dynamic response of active twist rotor blades. Smart Mater. Struct. 10, 62–76 (2001)Google Scholar
  161. 161.
    Buter, A., Breitbach, E.: Adaptive blade twist–calculations and experimental results. Aerosp. Sci. Technol. 4(5), 309–319 (2000)zbMATHGoogle Scholar
  162. 162.
    Kube, R., Kloppel, K.: On the role of prediction tools for adaptive rotor system developments. Smart Mater. Struct. 10(1), 137–144 (2001)Google Scholar
  163. 163.
    Ghiringhelli, G., Masarati, P., Mantegazza, P.: Analysis of an actively twisted rotor by multibody global modeling. Compos. Struct. 52(1), 113–122 (2001)Google Scholar
  164. 164.
    Wilkie, W., Park, K., Belvin, W.: Helicopter dynamic stall suppression using piezoelectric active fiber composite rotor blades. AIAA/ASME/AHS Structures, Structural Dynamics and Materials Conference, Long Beach, USA (1998)Google Scholar
  165. 165.
    Ghiringhelli, G., Masarati, P., Mantegazza, P.: A multi-body implementation of finite volume beams. J. Am. Inst. Aeronaut. 38(1), 131–138 (2000)Google Scholar
  166. 166.
    Pitt, D., Peters, D.: Theoretical prediction of dynamic inflow derivatives. Vertica 5(1), 21–34 (1981)Google Scholar
  167. 167.
    Smith, E.: Induced-shear piezoelectric actuators for active twist rotor blades. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper No. 2002–1446-CP (Denver, Colorado) (2002)Google Scholar
  168. 168.
    Gessow, A., Myers, G.: Aerodynamics of the Helicopter. College Park Press, College Park (1985)zbMATHGoogle Scholar
  169. 169.
    Leishmann, J.: Principles of Helicopter Aerodynamics. Cambridge University Press, Cambridge (2000)Google Scholar
  170. 170.
    Nguyen, K., Chopra, I.: Application of higher harmonic control to rotors operating at high speed and thrust. J. Am. Helicopter Soc. 35(3), 78–89 (1990)Google Scholar
  171. 171.
    Nguyen, K.: Active control of helicopter blade stall. J. Aircr. 35(1), 91–98 (1998)MathSciNetGoogle Scholar
  172. 172.
    Depailler, G., and Friedmann, P.: Reduction of vibrations due to dynamic stall in helicopters using an actively controlled flap. AIAA Paper No., AIAA-2002-1431 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ranjan Ganguli
    • 1
    Email author
  • Dipali Thakkar
    • 2
  • Sathyamangalam Ramanarayanan Viswamurthy
    • 3
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Aeronautical EngineeringSardar Vallabhbhai Patel Institute of TechnologyVasadIndia
  3. 3.Advanced Composites DivisionCSIR-National Aerospace LaboratoriesBangaloreIndia

Personalised recommendations