Skip to main content

The Role of the Second Na+ Pump in Mammals and Parasites

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Abstract

The mechanism for active (ATP-dependent) Na+ extrusion from intracellular compartments, not coupled to K+ influx and insensitive to ouabain, was discovered 50 years ago by Whittembury using renal cortical tissue, and is commonly denominated “the second Na+ pump.” This Na+-ATPase, sensitive to furosemide and ethacrynic acid, exists in both polarized and non-polarized cells and transports Na+ coupled to Cl in an electroneutral fashion, so the membrane potential is not changed during Na+ transport cycles. Cloning of the enzyme revealed proteins of 1039 amino acids in Trypanosoma cruzi (TcENA) and 811 amino acids in guinea pig enterocytes (ATNA). They share the main functional catalytic domains, which are highly conserved in the P-type ATPase family, but alignment of the parasite and mammalian enzymes reveals scant homology in terms of residues (Ser and Thr) that are potentially phosphorylatable by protein kinases. These differences in primary sequence indicate that selective regulatory mechanisms of the Na+-ATPases evolved differently to favor adaptation to different environmental challenges (i.e., acquisition of scarce nutrients in parasites). The second pump in mammals (kidney and heart) is regulated by signaling cascades that include angiotensins, angiotensin receptors, protein kinase C, and cyclic AMP-dependent and extracellular-signal-regulated protein kinases. Reactive oxygen species and NO are also important modulators of the Na+-ATPase. The pump is dysregulated, possibly by abnormal phosphorylations, in diseases and syndromes (frequently associated) such as obesity, chronic undernutrition, hypertension, and cardiac conduction remodeling with increased risk of sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyenbach KW (2004) Kidneys sans glomeruli. Am J Physiol Renal Physiol 286:F811–F827

    Article  CAS  PubMed  Google Scholar 

  2. Clausen MJV, Poulsen H (2013) Sodium/Potassium homeostasis in the cell. In: Banci L (ed) Metallomics and the cell, 1st edn. Springer, Florence, pp 41–67

    Google Scholar 

  3. Baldwin E (1964) An introduction to comparative biochemistry, 4th edn. Cambridge University Press, London

    Google Scholar 

  4. Overton E (1902) Beiträge zur allgemeinen Muskel- und Nervenphysiologie. Archiv für die gesamte Physiologie des Menschen und der Tiere 92:346–386. cf Glynn IM. In: Martonosi AN (ed) The Enzymes of Biological Membranes, 1st edn. Springer, New York. p 35–114, 1985

    Google Scholar 

  5. Steinbach HB (1940) Sodium and potassium in frog muscle. J Biol Chem 133:695–701

    CAS  Google Scholar 

  6. Dean RB (1941) Theories of electrolyte equilibrium in muscle. Biol Symp 3:331–348

    CAS  Google Scholar 

  7. Hodgkin AL, Keynes RD (1955) Active transport of cations in giant axons from Sepia and Loligo. J Physiol 128:28–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glynn IM (1956) Sodium and potassium movements in human red cells. J Physiol 134:278–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  10. Post RL, Jolly PC (1957) The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta 25:118–128

    Article  CAS  PubMed  Google Scholar 

  11. Skou JC (1960) Further investigation on a Mg++ + Na+-activated adenosine triphosphatase, possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim Biophys Acta 42:6–23

    Article  CAS  Google Scholar 

  12. Glynn IM (1985) The Na+,K+-Transporting adenosine triphosphatase. In: Martonosi AN (ed) The enzymes of biological membranes, 1st edn. Springer, New York, pp 35–114

    Google Scholar 

  13. Whittembury G (1965) Sodium extrusion and potassium uptake in guinea pig cortex slices. J Gen Physiol 48:699–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Whittembury G, Proverbio F (1970) Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pflugers Arch 316:1–25

    Article  CAS  PubMed  Google Scholar 

  15. Giebisch G, Boulpaep EL, Whittembury G (1971) Electrolyte transport in kidney tubule cells. Philos Trans R Soc Lond B Biol Sci 262:175–196

    Article  CAS  PubMed  Google Scholar 

  16. De Jairala SW, Vieyra A, MacLaughlin M (1972) Influence of ethacrynic acid and ouabain on the oxygen consumption and potassium and sodium content of the kidney external medulla of the dog. Biochim Biophys Acta 279:320–330

    Article  Google Scholar 

  17. Del Castillo JR, Marín R, Proverbio T, Proverbio F (1982) Partial characterization of the ouabain-insensitive, Na+-stimulated ATPase activity of kidney basal-lateral plasma membranes. Biochim Biophys Acta 692:61–68

    Article  PubMed  Google Scholar 

  18. Preiss R, Busse E, Banaschak H (1979) An ouabain-insensitive Na-ATPase of the arterial vascular muscle cell and its relation to ouabain-sensitive Na, K-ATPase. Acta Biol Med Ger 38:1387–1397

    CAS  PubMed  Google Scholar 

  19. Caruso-Neves C, Einicker-Lamas M, Chagas C et al (1999) Ouabain-insensitive Na+-ATPase activity in Trypanosoma cruzi epimastigotes. Z Naturforsch C 54:100–104

    CAS  PubMed  Google Scholar 

  20. Iizumi K, Mikami Y, Hashimoto M et al (2006) Molecular cloning and characterization of ouabain-insensitive Na+-ATPase in the parasitic protist, Trypanosoma cruzi. Biochim Biophys Acta 1758:738–746

    Article  CAS  PubMed  Google Scholar 

  21. Axelsen KB, Palmgren MG (1998) Evolution of substrates specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  CAS  PubMed  Google Scholar 

  22. Inesi G, Nakamoto RK (2008) Special issue on transport ATPases. Arch Biochem Biophys 476:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rocafull MA, Romero FJ, Thomas LE, Del Castillo JR (2011) Isolation and cloning of the K+-independent, ouabain-insensitive Na+-ATPase. Biochim Biophys Acta 1808:1684–1700

    Article  CAS  PubMed  Google Scholar 

  24. Rocafull MA, Thomas LE, Barrera GJ, Del Castillo JR (2010) Differential expression of P-type ATPases in intestinal epithelial cells: identification of putative new atp1a1 splice-variant. Biochem Biophys Res Commun 391:152–158

    Article  CAS  PubMed  Google Scholar 

  25. Rocafull MA, Thomas LE, Del Castillo JR (2012) The second sodium pump: from the function to the gene. Pflügers Arch 463:755–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Møller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    Article  PubMed  Google Scholar 

  27. Dick CF, Dos-Santos ALA, Majerowicz D et al (2012) Na+-dependent and Na+-independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochim Biophys Acta 1820:1001–1008

    Article  CAS  PubMed  Google Scholar 

  28. Dick CF, Dos-Santos ALA, Majerowicz D et al (2013) Inorganic phosphate uptake in Trypanosoma cruzi is coupled to K+ cycling and to active Na+ extrusion. Biochim Biophys Acta 1830:4265–4273

    Article  CAS  PubMed  Google Scholar 

  29. Caruso-Neves C, Einicker-Lamas M, Chagas C et al (1998) Trypanosoma cruzi epimastigotes express the ouabain- and vanadate-sensitive (Na++K+)ATPase activity. Z Naturforsch C 53:1049–1054

    CAS  PubMed  Google Scholar 

  30. Serra-Cardona A, Petrezsélyová S, Canadell D et al (2014) Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 34:4420–4435

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rangel LBA, Caruso-Neves C, Lara LS et al (1999) Angiotensin II activates the ouabain-insensitive Na+-ATPase from renal proximal tubules through a G-protein. Biochim Biophys Acta 1416:309–319

    Article  CAS  PubMed  Google Scholar 

  32. Rangel LBA, Malaquias AT, Lara LS et al (2001) Protein kinase C-induced phosphorylation modulates the Na+-ATPase activity from proximal tubules. Biochim Biophys Acta 1512:90–97

    Article  CAS  PubMed  Google Scholar 

  33. Rangel LBA, Caruso-Neves C, Lara LS, Lopes AG (2002) Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim Biophys Acta 1564:310–316

    Article  CAS  PubMed  Google Scholar 

  34. Rangel LBA, Lopes AG, Lara LS et al (2005) PI-PLCβ is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept 127:177–182

    Article  CAS  PubMed  Google Scholar 

  35. Caruso-Neves C, Rangel LBA, Vives D et al (2000) Ouabain-insensitive Na+-ATPase activity is an effector protein for cAMP regulation in basolateral membranes of the proximal tubule. Biochim Biophys Acta 1468:107–114

    Article  CAS  PubMed  Google Scholar 

  36. Santos RAS, Simoes e Silva AC, Maric C et al (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 100:8258–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lara LS, Vives D, Correa JS et al (2010) PKA-mediated effect of MAS receptor in counteracting angiotensin II-stimulated renal Na+-ATPase. Arch Biochem Biophys 496:117–122

    Article  CAS  PubMed  Google Scholar 

  38. Silva PA, Muzi-Filho H, Pereira-Acácio A et al (2014) Altered signaling pathways linked to angiotensin II underpin the upregulation of renal Na+-ATPase in chronically undernourished rats. Biochim Biophys Acta 1842:2357–2366

    Article  CAS  PubMed  Google Scholar 

  39. Silva PA, Monnerat-Cahli G, Pereira-Acácio A et al (2014) Mechanisms involving Ang II and MAPK/ERK1/2 signaling pathways underlie cardiac and renal alterations during chronic undernutrition. PLoS One 9:e100410

    Article  PubMed  PubMed Central  Google Scholar 

  40. Landgraf SS, Wengert M, Silva JS et al (2011) Changes in angiotensin receptors expression play a pivotal role in the renal damage observed in spontaneously hypertensive rats. Am J Physiol Renal Physiol 300:F499–F510

    Article  CAS  PubMed  Google Scholar 

  41. Queiroz-Madeira EP, Lara LS, Wengert M et al (2010) Na+-ATPase in spontaneous hypertensive rats: possible AT1 receptor target in the development of hypertension. Biochim Biophys Acta 1798:360–366

    Article  CAS  PubMed  Google Scholar 

  42. Miyoshi H, Perfield JW II, Souza SC et al (2007) Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 282:996–1002

    Article  CAS  PubMed  Google Scholar 

  43. Bełtowski J, Borkowska E, Wójcicka G, Marciniak A (2007) Regulation of renal ouabain-resistant Na+-ATPase by leptin, nitric oxide, reactive oxygen species, and cyclic nucleotides: implications for obesity-associated hypertension. Clin Exp Hypertens 29:189–207

    Article  PubMed  Google Scholar 

  44. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220

    Article  CAS  PubMed  Google Scholar 

  45. Gildea JJ, Wang X, Shah N et al (2012) Dopamine and angiotensin II type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells. Hypertension 60:396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bełtowski J, Jamroz-Wiśniewska A, Nazar J, Wójcicka G (2004) Spectrophotometric assay of renal ouabain-resistant Na+-ATPase and its regulation by leptin and dietary-induced obesity. Acta Biochim Pol 51:1003–1014

    PubMed  Google Scholar 

  47. Vieira-Filho LD, Cabral EV, Farias JS et al (2014) Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats. Br J Nutr 111:1932–1944

    Article  CAS  PubMed  Google Scholar 

  48. Axelband F, Dias J, Miranda F et al (2009) A scrutiny of the biochemical pathways from Ang II to Ang-(3–4) in renal basolateral membranes. Regul Pept 158:47–56

    Article  CAS  PubMed  Google Scholar 

  49. Dias J, Ferrão FM, Axelband F et al (2014) ANG-(3–4) inhibits renal Na+-ATPase in hypertensive rats through a mechanism that involves dissociation of ANG II receptors, heterodimers, and PKA. Am J Physiol Renal Physiol 306:F855–F863

    Article  CAS  PubMed  Google Scholar 

  50. Titze J, Dahlmann A, Lerchl K et al (2014) Spooky sodium balance. Kidney Int 85:759–767

    Article  CAS  PubMed  Google Scholar 

  51. Ivanova LN, Archibasova VK, Shterental I (1978) Sodium-depositing function of the skin in white rats. Fiziol Zh SSSR Im I M Sechenova 64:358–363. cf Titze J, Dahlmann A, Lerchl K et al (2014) Spooky sodium balance. Kidney Int 85:759–767

    Google Scholar 

  52. Titze J (2014) Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens 23:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Titze J, Lang R, Ilies C et al (2003) Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol 285:F1108–F1117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank BioMedEs (UK) for correcting the English as required. Data from our laboratories were obtained with financial support from the Brazilian National Research Council (CNPq), the Carlos Chagas Rio de Janeiro State Research Foundation (FAPERJ), the Pernambuco Research State Foundation (FACEPE), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), the Ministry of Health/Department of Science and Technology (MS/DECIT) and the National Institutes of Science and Technology (INCT/National Institute of Science and Technology for Structural Biology and Bioimaging).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalberto Vieyra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vieyra, A. et al. (2016). The Role of the Second Na+ Pump in Mammals and Parasites. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_6

Download citation

Publish with us

Policies and ethics