Skip to main content

Redox Regulation of the Na+-K+ ATPase in the Cardiovascular System

  • Chapter
  • First Online:
  • 1100 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

Abstract

The Na+-K+ ATPase is called “the oldest pump” as it has been the first of P-Type ATPases family to be discovered. This α/β heterodimeric molecule has an essential role in membrane transport of ions and organic molecules, and in cardiac myocytes, plays a key role in excitation–contraction coupling. Due to dynamic changes in the complex in vivo milieu, the pump function is tightly regulated in order to adapt to changing needs. Accumulating evidence has formed a consensus view that pump regulation is mediated by changes in phosphorylation of the FXYD1 protein that associates with the pump. However, this view is challenged by the lack of putative phosphorylation sites on the whole family of FXYD proteins that are expressed in tissue-specific manner. Moreover, the proposed functional effects of the phosphorylation, e.g. via β adrenergic signalling, are at odds with the role of the pump in clinical conditions like heart failure, and the clinical efficacy of drugs that block β1 adrenergic signalling. Regulation of the pump function via oxidative post-translational modification has emerged as an alternative with glutathionylation of β1 pump subunit and FXYD1 playing a dynamic regulatory role via receptor-coupled signalling in a variety of clinical conditions. In this chapter we briefly review structure and function of the Na+-K+ pump, and discuss in detail its regulation by redox pathways in the heart and critical regulatory role of FXYD1 proteins. We present the emerging role of redox regulation in the vasculature, where such signalling can have broad effects on cellular processes including vascular proliferation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  2. Gadsby DC, Kimura J, Noma A (1985) Voltage dependence of Na/K pump current in isolated heart cells. Nature 315:63–65

    Article  CAS  PubMed  Google Scholar 

  3. Albers RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 36:727–756

    Article  CAS  PubMed  Google Scholar 

  4. Post RL, Kume S, Tobin T et al (1969) Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J Gen Physiol 54:306–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheiner-Bobis G (2002) The sodium pump. Its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433

    Article  CAS  PubMed  Google Scholar 

  6. Glynn IM (1993) All hands to the sodium pump. J Physiol 462:1–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aronson PS (1985) Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol 47:545–560

    Article  CAS  PubMed  Google Scholar 

  8. Eisner DA, Lederer WJ (1985) Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol 248:C189–C202

    CAS  PubMed  Google Scholar 

  9. Hinata M, Kimura J (2004) Forefront of Na+/Ca2+ exchanger studies: stoichiometry of cardiac Na+/Ca2+ exchanger; 3:1 or 4:1? J Pharmacol Sci 96:15–18

    Article  CAS  PubMed  Google Scholar 

  10. Bers DM, Barry WH, Despa S (2003) Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 57:897–912

    Article  CAS  PubMed  Google Scholar 

  11. Pieske B, Houser SR (2003) [Na+]i handling in the failing human heart. Cardiovasc Res 57:874–886

    Article  CAS  PubMed  Google Scholar 

  12. Pogwizd SM, Sipido KR, Verdonck F et al (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896

    Article  CAS  PubMed  Google Scholar 

  13. Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93:487–490

    Article  CAS  PubMed  Google Scholar 

  14. Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang SB, Foster DB, Rucker J et al (2011) Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res 109:750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zweier JL, Chen CA, Talukder MA (2011) Cardiac resynchronization therapy and reverse molecular remodeling: importance of mitochondrial redox signaling. Circ Res 109:716–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu Y-K, Kaplan JH (2000) Ste-directed chemical labeling of extracellular loops in a membrane protein. The topology of the Na, K-ATPase alpha-subunit. J Biol Chem 275:19185–19191

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  19. Durr KL, Tavraz NN, Dempski RE et al (2009) Functional significance of E2 state stabilization by specific alpha/beta-subunit interactions of Na, K- and H, K-ATPase. J Biol Chem 284:3842–3854

    Article  PubMed  Google Scholar 

  20. Therien AG, Pu HX, Karlish SJ et al (2001) Molecular and functional studies of the gamma subunit of the sodium pump. J Bioenerg Biomembr 33:407–414

    Article  CAS  PubMed  Google Scholar 

  21. Geering K (2005) Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr 37:387–392

    Article  CAS  PubMed  Google Scholar 

  22. Cornelius F, Mahmmoud YA (2003) Themes in ion pump regulation. Ann N Y Acad Sci 986:579–586

    Article  CAS  PubMed  Google Scholar 

  23. Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290:F241–F250

    Article  CAS  PubMed  Google Scholar 

  24. Vaughan-Jones RD, Eisner DA, Lederer WJ (1985) The effects of intracellular Na on contraction and intracellular pH in mammalian cardiac muscle. Adv Myocardiol 5:313–330

    Article  CAS  PubMed  Google Scholar 

  25. Whalley DW, Hool LC, Ten Eick RE et al (1993) Effect of osmotic swelling and shrinkage on Na+-K+ pump activity in mammalian cardiac myocytes. Am J Physiol 265:C1201–C1210

    CAS  PubMed  Google Scholar 

  26. Therien AG, Blostein R (1999) K+/Na+ antagonism at cytoplasmic sites of Na+-K+-ATPase: a tissue-specific mechanism of sodium pump regulation. Am J Physiol 277:C891–C898

    CAS  PubMed  Google Scholar 

  27. Hansen PS, Buhagiar KA, Gray DF et al (2000) Voltage-dependent stimulation of the Na+-K+ pump by insulin in rabbit cardiac myocytes. Am J Physiol Cell Physiol 278:C546–C553

    CAS  PubMed  Google Scholar 

  28. Nakao M, Gadsby DC (1989) Na. and K. dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol 94:539–565

    Article  CAS  PubMed  Google Scholar 

  29. Heyse S, Wuddel I, Apell HJ et al (1994) Partial reactions of the Na, K-ATPase: determination of rate constants. J Gen Physiol 104:197–240

    Article  CAS  PubMed  Google Scholar 

  30. Rakowski RF, Bezanilla F, De Weer P et al (1997) Charge translocation by the Na/K pump. Ann N Y Acad Sci 834:231–243

    Article  CAS  PubMed  Google Scholar 

  31. Gadsby DC, Nakao M, Bahinski A (1989) Voltage dependence of transient and steady-state Na/K pump currents in myocytes. Mol Cell Biochem 89:141–146

    Article  CAS  PubMed  Google Scholar 

  32. Sagar A, Rakowski RF (1994) Access channel model for the voltage dependence of the forward-running Na+/K+ pump. J Gen Physiol 103:869–893

    Article  CAS  PubMed  Google Scholar 

  33. Shainskaya A, Schneeberger A, Apell HJ et al (2000) Entrance port for Na+ and K+ ions on Na+, K+-ATPase in the cytoplasmic loop between trans-membrane segments M6 and M7 of the alpha subunit. Proximity Of the cytoplasmic segment of the beta subunit. J Biol Chem 275:2019–2028

    Article  CAS  PubMed  Google Scholar 

  34. Apell HJ, Karlish SJ (2001) Functional properties of Na, K-ATPase, and their structural implications, as detected with biophysical techniques. J Membr Biol 180:1–9

    Article  CAS  PubMed  Google Scholar 

  35. Fuller W, Tulloch LB, Shattock MJ et al (2013) Regulation of the cardiac sodium pump. Cell Mol Life Sci 70:1357–1380

    Article  CAS  PubMed  Google Scholar 

  36. White CN, Liu CC, Garcia A et al (2010) Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity. J Biol Chem 285:13712–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rasmussen HH, Liu C, Hamilton EJ et al (2010) Reversible oxidative modification: implications to cardiovascular physiology and pathophysiology. Trends Cardiovasc Med 20:85–90

    Article  CAS  PubMed  Google Scholar 

  38. Sweadner KJ, Feschenko MS (2001) Predicted location and limited accessibility of protein kinase A phosphorylation site on Na-K-ATPase. Am J Physiol Cell Physiol 280:C1017–C1026

    CAS  PubMed  Google Scholar 

  39. Poulsen H, Morth P, Egebjerg J et al (2010) Phosphorylation of the Na+, K+-ATPase and the H+, K+-ATPase. FEBS Lett 584:2589–2595

    Article  CAS  PubMed  Google Scholar 

  40. Pimentel D, Haeussler DJ, Matsui R et al (2012) Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 16:524–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bogdanova A, Petrushanko I, Boldyrev A et al (2006) Oxygen and redox-induced regulation of the Na/K ATPase. Curr Enzym Inhib 2:37–59

    Article  CAS  Google Scholar 

  42. Shattock MJ, Matsuura H (1993) Measurement of Na+-K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidant stress. Circ Res 72:91–101

    Article  CAS  PubMed  Google Scholar 

  43. Rajagopalan S, Kurz S, Munzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. White CN, Figtree GA, Liu C-C et al (2009) Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase. Am J Physiol Cell Physiol 296:C693–C700

    Article  CAS  PubMed  Google Scholar 

  45. Figtree GA, Liu CC, Bibert S et al (2009) Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Circ Res 105:185–193

    Article  CAS  PubMed  Google Scholar 

  46. Baker JG (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol 160:1048–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gallogly MM, Starke DW, Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11:1059–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Francis SH, Busch JL, Corbin JD et al (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang M, Kass DA (2011) Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci 32:360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galougahi KK, Liu CC, Garcia A et al (2013) Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. J Physiol 591:2999–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bers DM, Despa S (2009) Na/K-ATPase—an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc Med 19:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bay J, Kohlhaas M, Maack C (2013) Intracellular Na(+) and cardiac metabolism. J Mol Cell Cardiol 61:20–27

    Article  CAS  PubMed  Google Scholar 

  53. Galougahi KK, Liu CC, Bundgaard H et al (2012) Beta-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling. Trends Cardiovasc Med 22:83–87

    Article  CAS  PubMed  Google Scholar 

  54. Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldstein DS, Eisenhofer G, Kopin IJ (2003) Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 305:800–811

    Article  CAS  PubMed  Google Scholar 

  56. Audigane L, Kerfant B-G, El Harchi A et al (2009) Rabbit, a relevant model for the study of cardiac β3-adrenoceptors. Exp Physiol 94:400–411

    Article  CAS  PubMed  Google Scholar 

  57. Massion PB, Balligand JL (2003) Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice. J Physiol 546:63–75

    Article  CAS  PubMed  Google Scholar 

  58. Bundgaard H, Liu CC, Garcia A et al (2010) β3 adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation 122:2699–2708

    Article  CAS  PubMed  Google Scholar 

  59. Moniotte S, Kobzik L, Feron O et al (2001) Upregulation of β3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655

    Article  CAS  PubMed  Google Scholar 

  60. Rasmussen H, Figtree G, Krum H et al (2009) The use of beta3-adrenergic receptor agonists in the treatment of heart failure. Curr Opin Investig Drugs 10:955–962

    CAS  PubMed  Google Scholar 

  61. Bibert S, Liu CC, Figtree GA et al (2011) FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its β1 subunit. J Biol Chem 286:18562–18572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu CC, Garcia A, Mahmmoud YA et al (2012) Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump. J Biol Chem 287:12353–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shinoda T, Ogawa H, Cornelius F et al (2009) Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature 459:446–450

    Article  CAS  PubMed  Google Scholar 

  64. Thogersen L, Nissen P (2012) Flexible P-type ATPases interacting with the membrane. Curr Opin Struct Biol 22:491–499

    Article  PubMed  Google Scholar 

  65. Lutsenko S, Kaplan JH (1994) Molecular events in close proximity to the membrane associated with the binding of ligands to the Na, K-ATPase. J Biol Chem 269:4555–4564

    CAS  PubMed  Google Scholar 

  66. Townsend DM, Manevich Y, He L et al (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buhagiar KA, Hansen PS, Gray DF et al (1999) Angiotensin regulates the selectivity of the Na+-K+ pump for intracellular Na+. Am J Physiol Cell Physiol 277:C461–C468

    CAS  Google Scholar 

  68. Hansen PS, Clarke RJ, Buhagiar KA et al (2007) Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes. Am J Physiol Cell Physiol 292:C1070–C1077

    Article  CAS  PubMed  Google Scholar 

  69. Akera T, Brody TM (1977) The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol Rev 29:187–220

    CAS  PubMed  Google Scholar 

  70. Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 232:C165–C173

    CAS  PubMed  Google Scholar 

  71. Blaustein MP, Juhaszova M, Golovina VA (1998) The cellular mechanism of action of cardiotonic steroids: a new hypothesis. Clin Exp Hypertens 20:691–703

    Article  CAS  PubMed  Google Scholar 

  72. Hermsmeyer K, Harder D (1986) Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am J Physiol 250:C557–C562

    CAS  PubMed  Google Scholar 

  73. Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol Cell Physiol 264:C1367–C1387

    CAS  Google Scholar 

  74. Blaustein MP, Zhang J, Chen L et al (2009) The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 53:291–298

    Article  CAS  PubMed  Google Scholar 

  75. James PF, Grupp IL, Grupp G et al (1999) Identification of a specific role for the Na, K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell 3:555–563

    Article  CAS  PubMed  Google Scholar 

  76. Borin ML, Tribe RM, Blaustein MP (1994) Increased intracellular Na+ augments mobilization of Ca2+ from SR in vascular smooth muscle cells. Am J Physiol Cell Physiol 266:C311–C317

    CAS  Google Scholar 

  77. Liu C-C, Karimi Galougahi K, Weisbrod RM et al (2013) Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Free Radic Biol Med 65:563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cohen RA, Vanhoutte PM (1995) Endothelium-dependent hyperpolarization. Beyond nitric oxide and cyclic GMP. Circulation 92:3337–3349

    Article  CAS  PubMed  Google Scholar 

  79. Griendling KK, Ushio-Fukai M, Lassegue B et al (1997) Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29:366–373

    Article  CAS  PubMed  Google Scholar 

  80. Tian J, Cai T, Yuan Z et al (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 17:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma A. Figtree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karimi Galougahi, K., Figtree, G.A. (2016). Redox Regulation of the Na+-K+ ATPase in the Cardiovascular System. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_19

Download citation

Publish with us

Policies and ethics