Skip to main content

Regulation of Brain Na-K ATPase Activity by Noradrenaline with Particular Reference to Normal and Altered Rapid Eye Movement Sleep

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

Abstract

Rapid eye movement sleep (REMS) is naturally expressed at least in all the mammals, including humans, studied so far. It is regulated by interplay among complex neuronal circuitry in the brain involving various neurotransmitters. Although the precise function and role of REMS is yet to be deciphered, loss of REMS increases brain excitability; however, the mechanism of action was unknown. As Na-K ATPase is the key molecule that maintains ionic homeostasis across neuronal membrane and modulates the excitability status of neurons, we proposed that REMS deprivation (REMSD) could affect the neuronal Na-K ATPase activity. On the other hand, evidences suggest that REMSD would elevate noradrenaline (NA) level in the brain and it has been proposed that REMS maintains brain NA at an optimum level. Therefore, while attempting to understand and explain the mechanism of action we hypothesized that REMSD-induced elevated NA could modulate Na-K ATPase activity in the brain and thus modulates the neuronal and brain excitability. In this chapter first we discuss the mechanism of increase in NA level in the brain after REMSD. Then we discuss the effect of such elevated NA on neuronal and glial Na-K ATPase activity. We observed that REMSD-induced increase in NA affected neuronal and glial Na-K ATPase activities in opposite manner, while it increased neuronal Na-K ATPase, and it decreased the same in glia. An intricate regulation of Na-K ATPase activity in neurons and glia is likely to be responsible for maintenance of ionic homeostasis in the brain during normal situation, which when disturbed including upon REMS loss patho-physiological changes and symptoms are expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skou JC (1990) The fourth Datta lecture. The energy coupled exchange of Na+ for K+ across the cell membrane. The Na+, K+-pump. FEBS Lett 268:314–324

    Article  CAS  PubMed  Google Scholar 

  2. Skou JC, Esmann M (1992) The Na, K-ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  3. Pavlov KV, Sokolov VS (2000) Electrogenic ion transport by Na+, K+-ATPase. Membr Cell Biol 13:745–788

    CAS  PubMed  Google Scholar 

  4. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    Article  CAS  PubMed  Google Scholar 

  5. Dement WC (1967) Possible physiological determinants of a possible dream-intensity cycle. Exp Neurol Suppl 4:38–55

    Article  Google Scholar 

  6. Dement W, Kleitman N (1957) The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J Exp Psychol 53:339–346

    Article  CAS  PubMed  Google Scholar 

  7. Ullman M (1958) The dream process. Am J Psychother 12:671–690

    CAS  PubMed  Google Scholar 

  8. Gulyani S, Majumdar S, Mallick BN (2000) Rapid eye movement sleep and significance of its deprivation studies-a review. Sleep Hypnosis 2:49–68

    Google Scholar 

  9. Mallick BN, Singh A (2011) REM sleep loss increases brain excitability: role of noradrenaline and its mechanism of action. Sleep Med Rev 15:165–178

    Article  PubMed  Google Scholar 

  10. Gulyani S, Mallick BN (1993) Effect of rapid eye movement sleep deprivation on rat brain Na-K ATPase activity. J Sleep Res 2:45–50

    Article  CAS  PubMed  Google Scholar 

  11. Zepelin H (2005) Mammalian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine, vol 4. Saunders, Philadelphia, pp 91–100

    Chapter  Google Scholar 

  12. Siegel JM (2008) Do all animals sleep? Trends Neurosci 31:208–213

    Article  CAS  PubMed  Google Scholar 

  13. Capellini I, Barton RA, McNamara P et al (2008) Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution 62:1764–1776

    Article  PubMed  PubMed Central  Google Scholar 

  14. McNamara P, Capellini I, Harris E et al (2008) The phylogeny of sleep database: a new resource for sleep scientists. Open Sleep J 1:11–14

    Article  PubMed Central  Google Scholar 

  15. Mirmiran M, Maas YG, Ariagno RL (2003) Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 7:321–334

    Article  PubMed  Google Scholar 

  16. Vogel GW, Feng P, Kinney GG (2000) Ontogeny of REM sleep in rats: possible implications for endogenous depression. Physiol Behav 68:453–461

    Article  CAS  PubMed  Google Scholar 

  17. Stephan-Blanchard E, Telliez F, Leke A et al (2008) The influence of in utero exposure to smoking on sleep patterns in preterm neonates. Sleep 31:1683–1689

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lehtonen L, Martin RJ (2004) Ontogeny of sleep and awake states in relation to breathing in preterm infants. Semin Neonatol 9:229–238

    Article  PubMed  Google Scholar 

  19. Marks GA, Shaffery JP, Oksenberg A et al (1995) A functional role for REM sleep in brain maturation. Behav Brain Res 69:1–11

    Article  CAS  PubMed  Google Scholar 

  20. Mirmiran M, Van Someren E (1993) Symposium: normal and abnormal REM sleep regulation: the importance of REM sleep for brain maturation. J Sleep Res 2:188–192

    Article  CAS  PubMed  Google Scholar 

  21. St Louis EK (2014) Key sleep neurologic disorders: narcolepsy, restless legs syndrome/Willis-Ekbom disease, and REM sleep behavior disorder. Neurol Clin Pract 4:16–25

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zeitzer JM (2013) Control of sleep and wakefulness in health and disease. Prog Mol Biol Transl Sci 119:137–154

    Article  PubMed  Google Scholar 

  23. Espana RA, Scammell TE (2011) Sleep neurobiology from a clinical perspective. Sleep 34:845–858

    PubMed  PubMed Central  Google Scholar 

  24. Gagnon JF, Petit D, Latreille V, Montplaisir J (2008) Neurobiology of sleep disturbances in neurodegenerative disorders. Curr Pharm Des 14:3430–3445

    Article  CAS  PubMed  Google Scholar 

  25. Guzman-Marin R, Suntsova N, Bashir T et al (2008) Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 31:167–175

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ackermann S, Rasch B (2014) Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep 14:430

    Article  PubMed  Google Scholar 

  27. Colavito V, Fabene PF, Grassi-Zucconi G et al (2013) Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 7:106

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marshall L, Born J (2007) The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci 11:442–450

    Article  PubMed  Google Scholar 

  29. Stickgold R, Walker MP (2007) Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8:331–343

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dement W, Fisher C (1963) Experimental interference with the sleep cycle. Can Psychiatr Assoc J 257:400–405

    Article  Google Scholar 

  31. Mallick BN, Thakkar M, Gulyani S (1994) Rapid eye movement sleep deprivation induced alteration in neuronal excitability: possible role of norepinephrine. In: Mallick BN, Singh R (eds) Environment and physiology, 1st edn. Narosa, New Delhi, pp 196–203

    Google Scholar 

  32. Mallick BN, Kaur S, Jha SK, Siegel JM (1999) Possible role of GABA in the regulation of REM sleep with special reference to REM-OFF neurons. In: Mallick BN, Inoue S (eds) Rapid eye movement sleep. Marcel Dekker, New York, pp 153–166

    Google Scholar 

  33. McCarren M, Alger BE (1987) Sodium-potassium pump inhibitors increase neuronal excitability in the rat hippocampal slice: role of a Ca2+-dependent conductance. J Neurophysiol 57:496–509

    CAS  PubMed  Google Scholar 

  34. Vaillend C, Mason SE, Cuttle MF, Alger BE (2002) Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region. J Neurophysiol 88:2963–2978

    Article  CAS  PubMed  Google Scholar 

  35. Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387

    CAS  PubMed  Google Scholar 

  36. Desfrere L, Karlsson M, Hiyoshi H et al (2009) Na, K-ATPase signal transduction triggers CREB activation and dendritic growth. Proc Natl Acad Sci U S A 106:2212–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. el-Mallakh RS, Wyatt RJ (1995) The Na, K-ATPase hypothesis for bipolar illness. Biol Psychiatry 37:235–244

    Article  CAS  PubMed  Google Scholar 

  38. Shiina N, Yamaguchi K, Tokunaga M (2010) RNG105 deficiency impairs the dendritic localization of mRNAs for Na+/K+ ATPase subunit isoforms and leads to the degeneration of neuronal networks. J Neurosci 30:12816–12830

    Article  CAS  PubMed  Google Scholar 

  39. Pasantes-Morales H, Tuz K (2006) Volume changes in neurons: hyperexcitability and neuronal death. Contrib Nephrol 152:221–240

    Article  CAS  PubMed  Google Scholar 

  40. Xiao AY, Wei L, Xia S et al (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    CAS  PubMed  Google Scholar 

  41. Gulyani S, Mallick BN (1995) Possible mechanism of rapid eye movement sleep deprivation induced increase in Na-K ATPase activity. Neuroscience 64:255–260

    Article  CAS  PubMed  Google Scholar 

  42. Mallick BN, Pandi-Permual SR, McCarley RW, Morrison AR (eds) (2011) Rapid eye movement sleep – regulation and function. Cambridge University Press, Cambridge

    Google Scholar 

  43. Mallick BN, Singh A, Khanday MA (2012) Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol 97:259–276

    Article  PubMed  Google Scholar 

  44. McCarley RW, Hobson JA (1975) Discharge patterns of cat pontine brain stem neurons during desynchronized sleep. J Neurophysiol 38:751–766

    CAS  PubMed  Google Scholar 

  45. Mallick BN, Siegel JM, Fahringer H (1990) Changes in pontine unit activity with REM sleep deprivation. Brain Res 515:94–98

    Article  CAS  PubMed  Google Scholar 

  46. Singh S, Mallick BN (1996) Mild electrical stimulation of pontine tegmentum around locus coeruleus reduces rapid eye movement sleep in rats. Neurosci Res 24:227–235

    Article  CAS  PubMed  Google Scholar 

  47. Pal D, Mallick BN (2007) Neural mechanism of rapid eye movement sleep generation with reference to REM-OFF neurons in locus coeruleus. Indian J Med Res 125:721–739

    CAS  PubMed  Google Scholar 

  48. Mallick BN, Kaur S, Saxena RN (2001) Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Neuroscience 104:467–485

    Article  CAS  PubMed  Google Scholar 

  49. Mallick BN, Majumdar S, Faisal M et al (2002) Role of norepinephrine in the regulation of rapid eye movement sleep. J Biosci 27:539–551

    Article  CAS  PubMed  Google Scholar 

  50. Thakkar M, Mallick BN (1993) Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience 55:677–683

    Article  CAS  PubMed  Google Scholar 

  51. Basheer R, Magner M, McCarley RW, Shiromani PJ (1998) REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Brain Res Mol Brain Res 57:235–240

    Article  CAS  PubMed  Google Scholar 

  52. Majumdar S, Faisal M, Madan V, Mallick BN (2003) Increased turnover of Na-K ATPase molecules in rat brain after rapid eye movement sleep deprivation. J Neurosci Res 73:870–875

    Article  CAS  PubMed  Google Scholar 

  53. Porkka-Heiskanen T, Smith SE, Taira T et al (1995) Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol 268:R1456–R1463

    CAS  PubMed  Google Scholar 

  54. Baskey G, Singh A, Sharma R, Mallick BN (2009) REM sleep deprivation-induced noradrenaline stimulates neuronal and inhibits glial Na-K ATPase in rat brain: in vivo and in vitro studies. Neurochem Int 54:65–71

    Article  CAS  PubMed  Google Scholar 

  55. Adya HV, Mallick BN (1998) Comparison of Na-K ATPase activity in rat brain synaptosome under various conditions. Neurochem Int 33:283–286

    Article  CAS  Google Scholar 

  56. Mallick BN, Adya HV, Faisal M (2000) Norepinephrine-stimulated increase in Na+, K+-ATPase activity in the rat brain is mediated through alpha1A-adrenoceptor possibly by dephosphorylation of the enzyme. J Neurochem 74:1574–1578

    Article  CAS  PubMed  Google Scholar 

  57. Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    Article  CAS  PubMed  Google Scholar 

  58. Jones BE, Moore RY (1974) Catecholamine-containing neurons of the nucleus locus coeruleus in the cat. J Comp Neurol 157:43–51

    Article  CAS  PubMed  Google Scholar 

  59. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  60. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  61. Foote SL, Loughlin SE, Cohen PS, Bloom FE, Livingston RB (1980) Accurate three-dimensional reconstruction of neuronal distributions in brain: reconstruction of the rat nucleus locus coeruleus. J Neurosci Methods 3:159–173

    Article  CAS  PubMed  Google Scholar 

  62. Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242:56–92

    Article  CAS  PubMed  Google Scholar 

  63. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    CAS  PubMed  Google Scholar 

  64. Kaur S, Panchal M, Faisal M et al (2004) Long term blocking of GABA-A receptor in locus coeruleus by bilateral microinfusion of picrotoxin reduced rapid eye movement sleep and increased brain Na-K ATPase activity in freely moving normally behaving rats. Behav Brain Res 151:185–190

    Article  CAS  PubMed  Google Scholar 

  65. Carter ME, Yizhar O, Chikahisa S et al (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Skou JC (1960) Further investigations on a Mg++ Na+-activated adenosintriphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim Biophys Acta 42:6–23

    Google Scholar 

  67. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  68. Jaiswal MK, Dvela M, Lichtstein D, Mallick BN (2010) Endogenous ouabain-like compounds in locus coeruleus modulate rapid eye movement sleep in rats. J Sleep Res 19:183–191

    Article  PubMed  Google Scholar 

  69. Lichtstein D, Rosen H (2001) Endogenous digitalis-like Na+, K+-ATPase inhibitors, and brain function. Neurochem Res 26:971–978

    Article  CAS  PubMed  Google Scholar 

  70. Goldstein I, Levy T, Galili D et al (2006) Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 60:491–499

    Article  CAS  PubMed  Google Scholar 

  71. Lichtstein D, Steinitz M, Gati I et al (1998) Bufodienolides as endogenous Na+, K+-ATPase inhibitors: biosynthesis in bovine and rat adrenals. Clin Exp Hypertens 20:573–579

    Article  CAS  PubMed  Google Scholar 

  72. Mallick BN, Adya HV, Thankachan S (1999) REM sleep deprivation alters factors affecting neuronal excitability: role of norepinephrine and its possible mechanism of action. In: Mallick BN, Inoue S (eds) Rapid eye movement sleep. Marcel Dekker, New York, pp 338–354

    Google Scholar 

  73. Adya HV, Mallick BN (2000) Uncompetitive stimulation of rat brain Na-K ATPase activity by rapid eye movement sleep deprivation. Neurochem Int 36:249–253

    Article  CAS  PubMed  Google Scholar 

  74. Davis PW, Vincenzi FF (1971) Ca-ATPase activation and Na-K-ATPase inhibition as a function of calcium concentration in human red cell membranes. Life Sci 10:401–406

    Article  CAS  Google Scholar 

  75. Beaugé L, Campos MA (1983) Calcium inhibition of the ATPase and phosphatase activities of Na+/K+ ATPase. Biochim Biophys Acta 729:137–149

    Article  PubMed  Google Scholar 

  76. Mallick BN, Adya HV (1999) Norepinephrine induced alpha-adrenoceptor mediated increase in rat brain Na-K ATPase activity is dependent on calcium ion. Neurochem Int 34:499–507

    Article  CAS  PubMed  Google Scholar 

  77. Das G, Gopalakrishnan A, Faisal M, Mallick BN (2008) Stimulatory role of calcium in rapid eye movement sleep deprivation-induced noradrenaline-mediated increase in Na-K-ATPase activity in rat brain. Neuroscience 155:76–89

    Article  CAS  PubMed  Google Scholar 

  78. Mallick BN, Gulyani S (1996) Alterations in synaptosomal calcium concentrations after rapid eye movement sleep deprivation in rats. Neuroscience 75:729–736

    Article  CAS  PubMed  Google Scholar 

  79. Gomez-Gonzalo M, Losi G, Chiavegato A et al (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 8:e1000352

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mcgrail KM, Phillips JM, Sweadner K (1991) Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J Neurosci 11:381–391

    CAS  PubMed  Google Scholar 

  82. Chu N, Bloom FE (1973) Norepinephrine-containing neurons: changes in spontaneous discharge patterns during sleeping and waking. Science 179:908–910

    Article  CAS  PubMed  Google Scholar 

  83. Jacobs BL (1986) Single unit activity of locus coeruleus neurons in behaving animals. Prog Neurobiol 27:183–194

    Article  CAS  PubMed  Google Scholar 

  84. Cespuglio R, Gomez ME, Faradji H, Jouvet M (1982) Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area. Electroencephalogr Clin Neurophysiol 54:570–578

    Article  CAS  PubMed  Google Scholar 

  85. Das G, Mallick BN (2008) Noradrenaline acting on alpha1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes. Neurochem Int 52:734–740

    Article  CAS  PubMed  Google Scholar 

  86. Hartmann A, Troadec JD, Hunot S et al (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21:2247–2255

    CAS  PubMed  Google Scholar 

  87. Troadec JD, Marien M, Darios F et al (2001) Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem 79:200–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Funding from Council of Scientific and Industrial Research; Department of Biotechnology; BUILDER project; Department of Science and Technology; Indian Council of Medical Research; JC Bose Fellowship; University Grants commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birendra N. Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amar, M., Singh, A., Mallick, B.N. (2016). Regulation of Brain Na-K ATPase Activity by Noradrenaline with Particular Reference to Normal and Altered Rapid Eye Movement Sleep. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_16

Download citation

Publish with us

Policies and ethics