Skip to main content

Global and Local Regulation of Replication Origin Activity

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes
  • 1490 Accesses

Abstract

Eukaryotic genomes are replicated from multiple initiation sites called DNA replication origins. Different origins fire at different times during S phase, giving rise to a characteristic temporal order to genome replication. However, the physiological role for temporal regulation of the order of genome replication remains largely unknown. Powerful genomic approaches have allowed genome replication dynamics to be characterised in various mutants and a range of species. Work in several organisms has revealed that limiting levels of trans-acting replication initiation factors are likely to play a role in determining origin firing time. This raises the question of how the initiation factors distinguish between origins. Recent work has started to identify cis-acting elements at origins that might be responsible for characteristic firing times. The identification of mechanisms that regulate the temporal order of genome replication is starting to allow investigation of potential physiological roles for temporally regulated replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman TJ, Mamun MA, Nieduszynski CA, Blow JJ. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res. 2013;41(21):9705–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Siow CC, Nieduszynska SR, Müller CA, Nieduszynski CA. OriDB, the DNA replication origin database updated and extended. Nucleic Acids Res. 2012;40(Database issue):D682–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Biol. 2013;5(8):a010132.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Donley N, Thayer MJ. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol. 2013;23(2):80–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. DePamphilis ML, Blow JJ, Ghosh S, Saha T, Noguchi K, Vassilev A. Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol. 2006;18(3):231–9.

    Article  CAS  PubMed  Google Scholar 

  6. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24(12):1208–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Diffley JF. Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci. 2011;366(1584):3545–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Leonard AC, Mechali M. DNA replication origins. Cold Spring Harb Perspect Biol. 2013;5(10):a010116.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ding Q, MacAlpine DM. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol. 2011;46(2):165–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol. 2014;30:104–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  12. Sheu YJ, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463(7277):113–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zegerman P, Diffley JF. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445(7125):281–5.

    Article  CAS  PubMed  Google Scholar 

  14. Daigaku Y, Keszthelyi A, Muller CA, Miyabe I, Brooks T, Retkute R, et al. A global profile of replicative polymerase usage. Nat Struct Mol Biol. 2015;22(3):192–8.

    Article  CAS  PubMed  Google Scholar 

  15. McGuffee SR, Smith DJ, Whitehouse I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell. 2013;50(1):123–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hawkins M, Retkute R, Müller CA, Saner N, Tanaka TU, de Moura AP, et al. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep. 2013;5(4):1132–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Alver RC, Chadha GS, Blow JJ. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair (Amst). 2014;19:182–9.

    Article  CAS  Google Scholar 

  18. McIntosh D, Blow JJ. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol. 2012;4(10):a012955.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature. 2011;470(7332):120–3.

    Article  CAS  PubMed  Google Scholar 

  20. Yabuki N, Terashima H, Kitada K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells. 2002;7(8):781–9.

    Article  CAS  PubMed  Google Scholar 

  21. Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, et al. Replication dynamics of the yeast genome. Science. 2001;294(5540):115–21.

    Article  CAS  PubMed  Google Scholar 

  22. Viggiani CJ, Knott SR, Aparicio OM. Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb Protoc. 2010;2010(2):pdbprot5385.

    Article  Google Scholar 

  23. Koren A, Soifer I, Barkai N. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 2010a;20(6):781–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Müller CA, Hawkins M, Retkute R, Malla S, Wilson R, Blythe MJ, et al. The dynamics of genome replication using deep sequencing. Nucleic Acids Res. 2014;42(1), e3.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gilbert DM. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet. 2010;11(10):673–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ, Raghuraman MK. Replication in hydroxyurea: it’s a matter of time. Mol Cell Biol. 2007;27(18):6396–406.

    Google Scholar 

  27. Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol. 2010;17(11):1391–7.

    Article  CAS  PubMed  Google Scholar 

  28. de Moura AP, Retkute R, Hawkins M, Nieduszynski CA. Mathematical modelling of whole chromosome replication. Nucleic Acids Res. 2010;38(17):5623–33.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yamashita M, Hori Y, Shinomiya T, Obuse C, Tsurimoto T, Yoshikawa H, et al. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2:655–66.

    Article  CAS  PubMed  Google Scholar 

  30. Friedman KL, Brewer BJ, Fangman WL. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2(11):667–78.

    Article  CAS  PubMed  Google Scholar 

  31. Rhind N. DNA replication timing: random thoughts about origin firing. Nat Cell Biol. 2006;8(12):1313–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yang SC, Rhind N, Bechhoefer J. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol. 2010;6:404.

    PubMed Central  PubMed  Google Scholar 

  33. Sekedat MD, Fenyo D, Rogers RS, Tackett AJ, Aitchison JD, Chait BT. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol Syst Biol. 2010;6:353.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Retkute R, Nieduszynski CA, de Moura A. Dynamics of DNA replication in yeast. Phys Rev Lett. 2011;107(6):068103.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Retkute R, Nieduszynski CA, de Moura A. Mathematical modeling of genome replication. Phys Rev E. 2012;86(3 Pt 1):031916.

    Article  Google Scholar 

  36. Raghuraman MK, Brewer BJ. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 2010;18(1):19–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Donaldson AD, Fangman WL, Brewer BJ. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 1998a;12(4):491–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bousset K, Diffley JF. The Cdc7 protein kinase is required for origin firing during S phase [published erratum appears in Genes Dev 1998 Apr 1;12(7):1072]. Genes Dev. 1998;12(4):480–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jackson LP, Reed SI, Haase SB. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol Cell Biol. 2006;26(6):2456–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gibson DG, Aparicio JG, Hu F, Aparicio OM. Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(23):10208–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Donaldson AD, Raghuraman MK, Friedman KL, Cross FR, Brewer BJ, Fangman WL. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol Cell. 1998b;2(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  42. Wu PY, Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell. 2009;136(5):852–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Patel PK, Kommajosyula N, Rosebrock A, Bensimon A, Leatherwood J, Bechhoefer J, et al. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol Biol Cell. 2008;19(12):5550–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21(24):2055–63.

    Article  CAS  PubMed  Google Scholar 

  45. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30(23):4805–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yoshida K, Bacal J, Desmarais D, Padioleau I, Tsaponina O, Chabes A, et al. The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast. Mol Cell. 2014;54(4):691–7.

    Article  CAS  PubMed  Google Scholar 

  47. Knott SR, Viggiani CJ, Tavare S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009;23(9):1077–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(11):4769–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Goren A, Tabib A, Hecht M, Cedar H. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 2008;22(10):1319–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Aggarwal BD, Calvi BR. Chromatin regulates origin activity in Drosophila follicle cells. Nature. 2004;430(6997):372–6.

    Article  CAS  PubMed  Google Scholar 

  51. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. Histone acetylation regulates the time of replication origin firing. Mol Cell. 2002;10(5):1223–33.

    Article  CAS  PubMed  Google Scholar 

  52. Nieduszynski CA, Knox Y, Donaldson AD. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 2006;20(14):1874–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, et al. A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet. 2013;9(3):e1003329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Peace JM, Ter-Zakarian A, Aparicio OM. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9(5):e98501.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 2014;7(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  56. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Dave A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7(1):53–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26(2):137–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, et al. Regulation of DNAreplication origins during cell-cycle progression. Nature. 1998;395(6702):618–21.

    Article  CAS  PubMed  Google Scholar 

  60. Gispan A, Carmi M, Barkai N. Checkpoint-independent scaling of the Saccharomyces cerevisiae DNA replication program. BMC Biol. 2014;12:79.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Looke M, Kristjuhan K, Varv S, Kristjuhan A. Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast. EMBO Rep. 2013;14(2):191–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Friedman KL, Diller JD, Ferguson BM, Nyland SV, Brewer BJ, Fangman WL. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev. 1996;10(13):1595–607.

    Article  CAS  PubMed  Google Scholar 

  63. Müller CA, Nieduszynski CA. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res. 2012;22(10):1953–62.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Pohl TJ, Kolor K, Fangman WL, Brewer BJ, Raghuraman MK. A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae. G3 (Bethesda). 2013;3(11):1955–63.

    Article  Google Scholar 

  65. Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell. 2012;148(1–2):99–111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Natsume T, Müller CA, Katou Y, Retkute R, Gierlinski M, Araki H, et al. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell. 2013;50(5):661–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Pohl TJ, Brewer BJ, Raghuraman MK. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet. 2012;8(5):e1002677.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet. 2013;9:e1003798.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, MacAlpine DM. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev. 2015;29(2):212–24.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K, Kommajosyula N, et al. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol. 2012;13(4):R27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. McCarroll RM, Fangman WL. Time of replication of yeast centromeres and telomeres. Cell. 1988;54(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  72. Koren A, Tsai HJ, Tirosh I, Burrack LS, Barkai N, Berman J. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in s-phase. PLoS Genet. 2010b;6(8):e1001068.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Kim SM, Dubey DD, Huberman JA. Early-replicating heterochromatin. Genes Dev. 2003;17(3):330–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Tiengwe C, Marcello L, Farr H, Dickens N, Kelly S, Swiderski M, et al. Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep. 2012;2(1):185–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ahmad K, Henikoff S. Centromeres are specialized replication domains in heterochromatin. J Cell Biol. 2001;153(1):101–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Li PC, Chretien L, Cote J, Kelly TJ, Forsburg SL. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle. 2011;10(2):323–36.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol. 2009;11(3):357–62.

    Article  CAS  PubMed  Google Scholar 

  78. Sridhar A, Kedziora S, Donaldson AD. At short telomeres Tel1 directs early replication and phosphorylates Rif1. PLoS Genet. 2014;10(10):e1004691.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Cooley C, Dave A, Garg M, Bianchi A. Tel1ATM dictates the replication timing of short yeast telomeres. EMBO Rep. 2014;15(10):1093–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010;20(6):761–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, et al. A three-dimensional model of the yeast genome. Nature. 2010;465(7296):363–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Saner N, Karschau J, Natsume T, Gierlinski M, Retkute R, Hawkins M, et al. Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol. 2013;202(7):1001–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Kaykov A, Nurse P. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res. 2015;25(3):391–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 2010;6(7):e1001011.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Di Rienzi SC, Lindstrom KC, Mann T, Noble WS, Raghuraman MK, Brewer BJ. Maintaining replication origins in the face of genomic change. Genome Res. 2012;22(10):1940–52.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Bianchi A, Shore D. Early Replication of Short Telomeres in Budding Yeast. Cell. 2007;128(6):1051–62.

    Article  CAS  PubMed  Google Scholar 

  87. Cosgrove AJ, Nieduszynski CA, Donaldson AD. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 2002;16(19):2485–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Dionne I, Wellinger RJ. Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res. 1998;26(23):5365–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Marcand S, Brevet V, Mann C, Gilson E. Cell cycle restriction of telomere elongation. Curr Biol. 2000;10(8):487–90.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H. Establishment of transcriptional competence in early and late S phase. Nature. 2002;420(6912):198–202.

    Article  CAS  PubMed  Google Scholar 

  91. Lande-Diner L, Zhang J, Cedar H. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol Cell. 2009;34(6):767–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Sima J, Gilbert DM. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev. 2014;25:93–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Woo YH, Li WH. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun. 2012;3:1004.

    Article  PubMed  Google Scholar 

  94. Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR. Human mutation rate associated with DNA replication timing. Nat Genet. 2009;41(4):393–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Agier N, Fischer G. The mutational profile of the yeast genome is shaped by replication. Mol Biol Evol. 2012;29(3):905–13.

    Article  CAS  PubMed  Google Scholar 

  96. Lang GI, Murray AW. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol. 2011;3:799–811.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Weber CC, Pink CJ, Hurst LD. Late-replicating domains have higher divergence and diversity in Drosophila melanogaster. Mol Biol Evol. 2012;29(2):873–82.

    Article  CAS  PubMed  Google Scholar 

  98. Brown CA, Murray AW, Verstrepen KJ. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol. 2010;20(10):895–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad A. Nieduszynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nieduszynski, C.A. (2016). Global and Local Regulation of Replication Origin Activity. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_6

Download citation

Publish with us

Policies and ethics