Skip to main content

Structure and Function Studies of Replication Initiation Factors

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes

Abstract

We have used negative stain EM and cryo-EM to visualize step by step the replication initiation events in S. cerevisiae, as the process is driven forward by the interplay of a dozen or so macromolecular initiation factors, leading to the establishment of pre-replication complexes (pre-RC) at each origin of DNA replication. This work took advantage of our ability to reconstitute the Mcm2-7 loading reaction with purified proteins. We determined the architecture of several previously known replication initiation complexes such as ORC, ORC-Cdc6 on DNA, and the Mcm2-7 double hexamer. We also captured by EM reaction intermediates such as the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) and the ORC-Cdc6-Mcm2-7-Mcm2-7 (OCMM) that had evaded previous biochemical identification. In this chapter, we describe what we have learnt about the structure and interaction with origin DNA of the replication initiators. We further discuss what may be expected in the coming years as cryo-EM is becoming a near-atomic resolution structural tool, thanks to the recent advent of the direct electron detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stillman B. Origin recognition and the chromosome cycle. FEBS Lett. 2005;579(4):877–84.

    Article  CAS  PubMed  Google Scholar 

  2. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333–74.

    Article  CAS  PubMed  Google Scholar 

  3. O’Donnell M, Langston L, Stillman B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol. 2013;5(7):a010108.

    PubMed Central  PubMed  Google Scholar 

  4. Li H, Stillman B. The origin recognition complex: a biochemical and structural view. Subcell Biochem. 2012;62:37–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bell SP, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357(6374):128–34.

    Article  CAS  PubMed  Google Scholar 

  6. Liang C, Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 1997;11(24):3375–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tanaka T, Knapp D, Nasmyth K. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell. 1997;90(4):649–60.

    Article  CAS  PubMed  Google Scholar 

  8. Weinreich M, Liang C, Stillman B. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A. 1999;96(2):441–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Perkins G, Diffley JF. Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol Cell. 1998;2(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  10. Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem. 2007;282(16):11705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106(48):20240–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Botchan M, Berger J. DNA replication: making two forks from one prereplication complex. Mol Cell. 2010;40(6):860–1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Diffley JF, Cocker JH, Dowell SJ, Rowley A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell. 1994;78(2):303–16.

    Article  CAS  PubMed  Google Scholar 

  16. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  17. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103(27):10236–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18(4):471–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Costa A, Renault L, Swuec P, Petojevic T, Pesavento J, Ilves I, et al. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife. 2014;3:e03273.

    PubMed Central  PubMed  Google Scholar 

  20. Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, et al. Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A. 2015;112(3):E249–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chen Z, Speck C, Wendel P, Tang C, Stillman B, Li H. The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2008;105(30):10326–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sun J, Evrin C, Samel SA, Fernandez-Cid A, Riera A, Kawakami H, et al. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol. 2013;20(8):944–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, et al. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev. 2014;28(20):2291–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sun J, Kawakami H, Zech J, Speck C, Stillman B, Li H. Cdc6-induced conformational changes in ORC bound to origin DNA revealed by cryo-electron microscopy. Structure. 2012;20(3):534–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Clarey MG, Erzberger JP, Grob P, Leschziner AE, Berger JM, Nogales E, et al. Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol. 2006;13(8):684–90.

    Article  CAS  PubMed  Google Scholar 

  26. Ohi M, Li Y, Cheng Y, Walz T. Negative staining and image classification - powerful tools in modern electron microscopy. Biol Proced Online. 2004;6:23–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Baker ML, Zhang J, Ludtke SJ, Chiu W. Cryo-EM of macromolecular assemblies at near-atomic resolution. Nat Protoc. 2010;5(10):1697–708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Klemm RD, Austin RJ, Bell SP. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell. 1997;88(4):493–502.

    Article  CAS  PubMed  Google Scholar 

  29. Dueber EL, Corn JE, Bell SD, Berger JM. Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex. Science. 2007;317(5842):1210–3.

    Article  CAS  PubMed  Google Scholar 

  30. Gaudier M, Schuwirth BS, Westcott SL, Wigley DB. Structural basis of DNA replication origin recognition by an ORC protein. Science. 2007;317(5842):1213–6.

    Article  CAS  PubMed  Google Scholar 

  31. Lipford JR, Bell SP. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell. 2001;7(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  32. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16(6):967–78.

    Article  CAS  PubMed  Google Scholar 

  33. Bleichert F, Botchan MR, Berger JM. Crystal structure of the eukaryotic origin recognition complex. Nature. 2015;519:321–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chen S, de Vries MA, Bell SP. Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. Genes Dev. 2007;21(22):2897–907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Takara TJ, Bell SP. Multiple Cdt1 molecules act at each origin to load replication-competent Mcm2-7 helicases. EMBO J. 2011;30(24):4885–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu C, Wu R, Zhou B, Wang J, Wei Z, Tye BK, et al. Structural insights into the Cdt1-mediated MCM2-7 chromatin loading. Nucleic Acids Res. 2012;40(7):3208–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. You Z, Masai H. Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity. J Biol Chem. 2008;283(36):24469–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Samel SA, Fernandez-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 2014;28(15):1653–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Arias-Palomo E, O’Shea VL, Hood IV, Berger JM. The bacterial DnaC helicase loader is a DnaB ring breaker. Cell. 2013;153(2):438–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fernandez-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, et al. An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol Cell. 2013;50(4):577–88.

    Article  CAS  PubMed  Google Scholar 

  41. Frigola J, Remus D, Mehanna A, Diffley JF. ATPase-dependent quality control of DNA replication origin licensing. Nature. 2013;495(7441):339–43.

    Article  CAS  PubMed  Google Scholar 

  42. Randell JC, Bowers JL, Rodriguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell. 2006;21(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  43. Kang S, Warner MD, Bell SP. Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell. 2014;55:655–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yardimci H, Walter JC. Prereplication-complex formation: a molecular double take? Nat Struct Mol Biol. 2014;21(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  45. Chistol G, Walter JC. Single-molecule visualization of MCM2-7 DNA loading: seeing is believing. Cell. 2015;161(3):429–30.

    Article  CAS  PubMed  Google Scholar 

  46. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell. 2015;161(3):513–25.

    Article  CAS  PubMed  Google Scholar 

  47. Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell. 2015;58:483–94.

    Article  CAS  PubMed  Google Scholar 

  48. Remus D, Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol. 2009;21(6):771–7.

    Article  CAS  PubMed  Google Scholar 

  49. Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell. 2010;40(5):834–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Coster G, Frigola J, Beuron F, Morris EP, Diffley JF. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell. 2014;55:666–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Slaymaker IM, Chen XS. MCM structure and mechanics: what we have learned from archaeal MCM. Subcell Biochem. 2012;62:89–111.

    Article  CAS  PubMed  Google Scholar 

  52. Sheu YJ, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24(1):101–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Sheu YJ, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463(7277):113–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sheu YJ, Kinney JB, Lengronne A, Pasero P, Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc Natl Acad Sci U S A. 2014;111(18):E1899–908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, et al. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem. 2013;288(21):14926–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Davey MJ, Indiani C, O’Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem. 2003;278(7):4491–9.

    Article  CAS  PubMed  Google Scholar 

  57. Bochman ML, Bell SP, Schwacha A. Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol. 2008;28(19):5865–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Bochman ML, Schwacha A. The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 ‘gate’. Nucleic Acids Res. 2010;38(18):6078–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Bochman ML, Schwacha A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev. 2009;73(4):652–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Henderson R. Structural biology: ion channel seen by electron microscopy. Nature. 2013;504(7478):93–4.

    Article  CAS  PubMed  Google Scholar 

  61. Kuhlbrandt W. Biochemistry. The resolution revolution. Science. 2014;343(6178):1443–4.

    Article  PubMed  Google Scholar 

  62. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 2013;10(6):584–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many people in the labs of Huilin Li, Christian Speck, and Bruce Stillman have helped in this work. The work was supported by National Institutes of Health grant numbers GM45436 (to B.S.) and GM74985 (to H.L.) and the United Kingdom Biotechnology and Biological Sciences Research Council (to C.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce Stillman , Christian Speck or Huilin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, J., Yuan, Z., Stillman, B., Speck, C., Li, H. (2016). Structure and Function Studies of Replication Initiation Factors. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_21

Download citation

Publish with us

Policies and ethics