Skip to main content

Assembly of the Cdc45-MCM2-7-GINS Complex, the Replication Helicase

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes
  • 1493 Accesses

Abstract

In eukaryotes, a crucial step during the initiation of DNA replication is the timely formation and activation of the replicative DNA helicase composed of Cdc45, MCM2-7 and GINS (CMG). The dynamic and spatio-temporal events leading to the ordered and stepwise assembly of the CMG helicase are tightly regulated. Multiple assembly factors ensure in this way that replication occurs only once per cell cycle. The MCM2-7 helicase is loaded in an inactive form onto double-stranded DNA in the G1 phase of the cell cycle, whereas the fully reconstituted CMG complex is assembled and positioned onto single-stranded DNA during the S phase. Thus, DNA plays an important and active role in these events. In this chapter we summarize and discuss our current knowledge about the appropriate recruitment and assembly of the CMG complex into the active eukaryotic replicative DNA helicase, emphasizing the crucial role of DNA in this process. We finally outline how the number of active CMG complexes formed is restricted during unperturbed DNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aparicio T, Ibarra A, Méndez J. Cdc45-MCM-GINS, a new power player for DNA replication. Cell Div. 2006;1:18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103:10236–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37:247–58.

    Article  PubMed  CAS  Google Scholar 

  4. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18:471–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Liu Y, Richards TA, Aves SJ. Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evol Biol. 2009;9:60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Aves SJ, Liu Y, Richards TA. Evolutionary diversification of eukaryotic DNA replication machinery. Subcell Biochem. 2012;62:19–35.

    Article  PubMed  CAS  Google Scholar 

  7. Forsburg SL. Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev. 2004;68:109–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Bochman ML, Schwacha A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev. 2009;73:652–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Vijayraghavan S, Schwacha A. The eukaryotic Mcm2-7 replicative helicase. Subcell Biochem. 2012;62:113–34.

    Article  PubMed  CAS  Google Scholar 

  10. Crevel G, Ivetic A, Ohno K, Yamaguchi M, Cotterill S. Nearest neighbour analysis of MCM protein complexes in Drosophila melanogaster. Nucleic Acids Res. 2001;29:4834–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Schwacha A, Bell SP. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell. 2001;8:1093–104.

    Article  PubMed  CAS  Google Scholar 

  12. Barry ER, McGeoch AT, Kelman Z, Bell SD. Archaeal MCM has separable processivity, substrate choice and helicase domains. Nucleic Acids Res. 2007;35:988–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Wiedemann C, Szambowska A, Häfner S, Ohlenschläger O, Görlach M. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome. Nucleic Acids Res. 2015;43:2958–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, et al. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev. 2014;28:2291–303.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Randell JCW, Bowers JL, Rodríguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell. 2006;21:29–39. doi:10.1016/j.molcel.2005.11.023.

    Article  PubMed  CAS  Google Scholar 

  16. Weinreich M, Liang C, Chen HH, Stillman B. Binding of cyclin-dependent kinases to ORC and Cdc6p regulates the chromosome replication cycle. Proc Natl Acad Sci U S A. 2001;98:11211–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12:965–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Donovan S, Harwood J, Drury LS, Diffley JF. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A. 1997;94:5611–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106:20240–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS. The structure and function of MCM from archaeal M. thermoautotrophicum. Nat Struct Biol. 2003;10:160–7.

    Article  PubMed  CAS  Google Scholar 

  22. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24:1208–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Sheu Y-J, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463:113–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JFX. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 2014;33:605–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Hesketh EL, Parker-Manuel RP, Chaban Y, Satti R, Coverley D, Orlova EV, et al. DNA induces conformational changes in a recombinant human minichromosome maintenance complex. J Biol Chem. 2015;290:7973–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Costa A, Renault L, Swuec P, Petojevic T, Pesavento J, Ilves I, et al. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife. 2014;3:e03273.

    PubMed Central  PubMed  Google Scholar 

  27. Frigola J, Remus D, Mehanna A, Diffley JFX. ATPase-dependent quality control of DNA replication origin licensing. Nature. 2013;495:339–43.

    Article  PubMed  CAS  Google Scholar 

  28. Fernández-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, et al. An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol Cell. 2013;50:577–88.

    Article  PubMed  CAS  Google Scholar 

  29. Kang S, Warner MD, Bell SP. Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell. 2014;55:655–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Boos D, Frigola J, Diffley JFX. Activation of the replicative DNA helicase: breaking up is hard to do. Curr Opin Cell Biol. 2012;24:423–30.

    Article  PubMed  CAS  Google Scholar 

  31. Diffley JFX. The many faces of redundancy in DNA replication control. Cold Spring Harb Symp Quant Biol. 2010;75:135–42.

    Article  PubMed  CAS  Google Scholar 

  32. Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication. Annu Rev Genet. 2007;41:237–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Sheu Y-J, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24:101–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, et al. Dbf4 and Cdc7 promote DNA replication through interactions with distinct Mcm2-7 subunits. J Biol Chem. 2013;288:14926–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Yeeles JTP, Deegan TD, Janska A, Early A, Diffley JFX. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519(7544):431–5.

    Article  PubMed  CAS  Google Scholar 

  36. Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem. 2015;290:1210–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Bruck I, Kaplan DL. Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem. 2009;284:28823–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Zegerman P, Diffley JFX. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445:281–5.

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445:328–32.

    Article  PubMed  CAS  Google Scholar 

  40. Kang Y-H, Galal WC, Farina A, Tappin I, Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A. 2012;109:6042–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell. 2011;146:931–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma. 2015;124:13–26.

    Article  PubMed  CAS  Google Scholar 

  43. Bell SD, Botchan MR. The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol. 2013;5:a012807.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S. Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem. 2012;287:4121–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Bruck I, Kaplan DL. Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem. 2013;288:7550–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, et al. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res. 2014;42:2308–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, et al. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A. 2015;112:E249–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Aparicio T, Guillou E, Coloma J, Montoya G, Méndez J. The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication. Nucleic Acids Res. 2009;37:2087–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Aparicio OM, Weinstein DM, Bell SP. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell. 1997;91:59–69.

    Article  PubMed  CAS  Google Scholar 

  50. Hardy CF. Identification of Cdc45p, an essential factor required for DNA replication. Gene. 1997;187:239–46.

    Article  PubMed  CAS  Google Scholar 

  51. Bauerschmidt C, Pollok S, Kremmer E, Nasheuer H-P, Grosse F. Interactions of human Cdc45 with the Mcm2 – 7 complex, the GINS complex, and DNA polymerases δ and ε during S phase. Genes Cells. 2007;12:745–58.

    PubMed  CAS  Google Scholar 

  52. Pacek M, Walter JC. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 2004;23:3667–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Pacek M, Tutter A, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell. 2006;21:581–7.

    Article  PubMed  CAS  Google Scholar 

  54. Di Perna R, Aria V, De Falco MM, Sannino V, Okorokov AL, Pisani FM, et al. The physical interaction of Mcm10 with Cdc45 modulates their DNA binding properties. Biochem J. 2013;454:333–43.

    Article  PubMed  CAS  Google Scholar 

  55. Zou L, Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000;20:3086–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Schmidt U, Wollmann Y, Franke C, Grosse F, Saluz H-P, Hänel F. Characterization of the interaction between the human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and the cell division cycle 45 (Cdc45) protein. Biochem J. 2008;409:169–77.

    Article  PubMed  CAS  Google Scholar 

  57. Gerhardt J, Guler GD, Fanning E. Human DNA helicase B interacts with the replication initiation protein Cdc45 and facilitates Cdc45 binding onto chromatin. Exp Cell Res. 2015;334:283–93.

    Article  PubMed  CAS  Google Scholar 

  58. Aravind L, Koonin EV. A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci. 1998;23:17–9.

    Article  PubMed  CAS  Google Scholar 

  59. Sanchez-Pulido L, Ponting CP. Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics. 2011;27:1885–8.

    Article  PubMed  CAS  Google Scholar 

  60. Lovett ST, Kolodner RD. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989;86:2627–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Courcelle CT, Chow K-H, Casey A, Courcelle J. Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci U S A. 2006;103:9154–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17:1153–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 2003;17:1141–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Gómez EB, Angeles VT, Forsburg SL. A screen for Schizosaccharomyces pombe mutants defective in rereplication identifies new alleles of rad4+, cut9+ and psf2+. Genetics. 2005;169:77–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Yabuuchi H, Yamada Y, Uchida T, Sunathvanichkul T, Nakagawa T, Masukata H. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J. 2006;25:4663–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Kanemaki M, Labib K. Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J. 2006;25:1753–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8:358–66.

    Article  PubMed  CAS  Google Scholar 

  68. Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol. 2007;14:388–96.

    Article  PubMed  CAS  Google Scholar 

  69. Choi JM, Lim HS, Kim JJ, Song O-K, Cho Y. Crystal structure of the human GINS complex. Genes Dev. 2007;21:1316–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Boskovic J, Coloma J, Aparicio T, Zhou M, Robinson CV, Méndez J, et al. Molecular architecture of the human GINS complex. EMBO Rep. 2007;8:678–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Sengupta S, van Deursen F, de Piccoli G, Labib K. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol. 2013;23:543–52.

    Article  PubMed  CAS  Google Scholar 

  72. Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, Yao NY, et al. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A. 2014;111:15390–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. De Falco M, Ferrari E, De Felice M, Rossi M, Hübscher U, Pisani FM. The human GINS complex binds to and specifically stimulates human DNA polymerase alpha-primase. EMBO Rep. 2007;8:99–103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Tanaka T, Umemori T, Endo S, Muramatsu S, Kanemaki M, Kamimura Y, et al. Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J. 2011;30:2019–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21:2055–63.

    Article  PubMed  CAS  Google Scholar 

  76. Kamimura Y, Tak Y-S, Sugino A, Araki H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 2001;20:2097–107.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Muramatsu S, Hirai K, Tak Y-S, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ε, and GINS in budding yeast. Genes Dev. 2010;24:602–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Tak Y-S, Tanaka Y, Endo S, Kamimura Y, Araki H. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J. 2006;25:1987–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Tanaka S, Komeda Y, Umemori T, Kubota Y, Takisawa H, Araki H. Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol. 2013;33:2614–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Fukuura M, Nagao K, Obuse C, Takahashi TS, Nakagawa T, Masukata H. CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast. Mol Biol Cell. 2011;22:2620–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Araki H, Leem SH, Phongdara A, Sugino A. Dpb11, which interacts with DNA polymerase II(ε) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci U S A. 1995;92:11791–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Masumoto H, Sugino A, Araki H. Dpb11 controls the association between DNA polymerases α and ε and the autonomously replicating sequence region of budding yeast. Mol Cell Biol. 2000;20:2809–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Mäkiniemi M, Hillukkala T, Tuusa J, Reini K, Vaara M, Huang D, et al. BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem. 2001;276:30399–406.

    Article  PubMed  Google Scholar 

  84. Kesti T, Flick K, Keranen S, Syväoja JE, Wittenberg C. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell. 1999;3:679–85.

    Article  PubMed  CAS  Google Scholar 

  85. Dua R, Levy DL, Campbell JL. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem. 1999;274:22283–8.

    Article  PubMed  CAS  Google Scholar 

  86. Feng W, D’Urso G. Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol. 2001;21:4495–504.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Hiraga S-I, Hagihara-Hayashi A, Ohya T, Sugino A. DNA polymerases α, δ, and ε localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells. 2005;10:297–309.

    Article  PubMed  CAS  Google Scholar 

  88. Nuutinen T, Tossavainen H, Fredriksson K, Pirilä P, Permi P, Pospiech H, et al. The solution structure of the amino-terminal domain of human DNA polymerase ε subunit B is homologous to C-domains of AAA+ proteins. Nucleic Acids Res. 2008;36:5102–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Kang Y, Farina A, Bermudez VP, Tappin I, Du F, Galal WC, et al. Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase. Proc Natl Acad Sci U S A. 2013;110:4–9.

    Article  Google Scholar 

  90. Araki H. Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr Opin Cell Biol. 2010;22:766–71.

    Google Scholar 

  91. Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol. 2015;2(3):185–91.

    Article  CAS  Google Scholar 

  92. Daigaku Y, Keszthelyi A, Müller CA, Miyabe I, Brooks T, Retkute R, et al. A global profile of replicative polymerase usage. Nat Struct Mol Biol. 2015;22:192–8.

    Article  PubMed  CAS  Google Scholar 

  93. Pospiech H, Grosse F, Pisani FM. The initiation step of eukaryotic DNA replication. Subcell Biochem. 2010;50:79–104.

    Article  PubMed  CAS  Google Scholar 

  94. Garcia V, Furuya K, Carr AM. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst). 2005;4:1227–39.

    Article  CAS  Google Scholar 

  95. Wardlaw CP, Carr AM, Oliver AW. TopBP1: a BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst). 2014;22C:165–74.

    Article  CAS  Google Scholar 

  96. Sokka M, Parkkinen S, Pospiech H, Syväoja JE. Function of TopBP1 in genome stability. Subcell Biochem. 2010;1:119–41.

    Article  CAS  Google Scholar 

  97. Van Hatten RA, Tutter AV, Holway AH, Khederian AM, Walter JC, Michael WM. The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol. 2002;159:541–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Hashimoto Y, Takisawa H. Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J. 2003;22:2526–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell. 2005;121:887–98.

    Article  PubMed  CAS  Google Scholar 

  100. Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol Cell Biol. 2006;26:4843–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Im J-S, Ki S-H, Farina A, Jung D-S, Hurwitz J, Lee J-K. Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A. 2009;106:15628–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem. 2014;83:519–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9:644–54.

    Article  PubMed  CAS  Google Scholar 

  104. Siitonen HA, Sotkasiira J, Biervliet M, Benmansour A, Capri Y, Cormier-daire V, et al. The mutation spectrum in RECQL4 diseases. Eur J Hum Genet. 2009;17:151–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Barea F, Tessaro S, Bonatto D. In silico analyses of a new group of fungal and plant RecQ4-homologous proteins. Comput Biol Chem. 2008;32:349–58.

    Article  PubMed  CAS  Google Scholar 

  106. Groocock LM, Prudden J, Perry JJ, Boddy MN. The RecQ4 orthologue Hrq1 is critical for DNA interstrand cross-link repair and genome stability in fission yeast. Mol Cell Biol. 2012;32:276–87.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Bochman ML, Paeschke K, Chan A, Zakian VA. Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity. Cell Rep. 2014;6:346–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Kamimura Y, Masumoto H, Sugino A, Araki H. Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol. 1998;18:6102–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, et al. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res. 2012;40:8309–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. J Cell Biol. 2014;204:507–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Marino F, Vindigni A, Onesti S. Bioinformatic analysis of RecQ4 helicases reveals the presence of a RQC domain and a Zn knuckle. Biophys Chem. 2013;177–178:34–9.

    Article  PubMed  CAS  Google Scholar 

  112. Ichikawa K, Noda T, Furuichi Y. Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund-Thomson syndrome caused by the mutation of DNA helicases. Nihon Yakurigaku Zasshi. 2002;119:219–26.

    Article  PubMed  CAS  Google Scholar 

  113. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G. Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet. 2005;14:813–25.

    Article  PubMed  CAS  Google Scholar 

  114. Capp C, Wu J, Hsieh T. Drosophila RecQ4 has a 3′-5′ DNA helicase activity that is essential for viability. J Biol Chem. 2009;284:30845–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Abe T, Yoshimura A, Hosono Y, Tada S, Seki M, Enomoto T. The N-terminal region of RECQL4 lacking the helicase domain is both essential and sufficient for the viability of vertebrate cells. Role of the N-terminal region of RECQL4 in cells. Biochim Biophys Acta. 2011;1813:473–9.

    Article  PubMed  CAS  Google Scholar 

  116. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H, Fukumura R, et al. Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet. 2003;12:2293–9.

    Article  PubMed  CAS  Google Scholar 

  117. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140:349–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Sansam CL, Cruz NM, Danielian PS, Amsterdam A, Lau ML, Hopkins N, et al. A vertebrate gene, ticrr, is an essential checkpoint and replication regulator. Genes Dev. 2010;24:183–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Sanchez-Pulido L, Diffley JFX, Ponting CP. Homology explains the functional similarities of Treslin/Ticrr and Sld3. Curr Biol. 2010;20:R509–10.

    Article  PubMed  CAS  Google Scholar 

  120. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol. 2011;193:995–1007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, et al. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol. 2011;21:1–6.

    Article  CAS  Google Scholar 

  122. Mueller AC, Keaton MA, Dutta A. DNA replication: mammalian Treslin-TopBP1 interaction mirrors yeast Sld3-Dpb11. Curr Biol. 2011;21:R638–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Itou H, Muramatsu S, Shirakihara Y, Araki H. Crystal structure of the homology domain of the eukaryotic DNA replication proteins sld3/treslin. Structure. 2014;22:1341–7.

    Article  PubMed  CAS  Google Scholar 

  124. Chowdhury A, Liu G, Kemp M, Chen X, Katrangi N, Myers S, et al. The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol Cell Biol. 2010;30:1495–507.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Gao Y, Yao J, Poudel S, Romer E, Abu-Niaaj L, Leffak M. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J Biol Chem. 2014;289:35987–6000.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Balestrini A, Cosentino C, Errico A, Garner E, Costanzo V. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat Cell Biol. 2010;12:484–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Boos D, Yekezare M, Diffley JF. Identification of a heteromeric complex that promotes DNA replication origin firing in human cells. Science. 2013;340:981–4.

    Article  PubMed  CAS  Google Scholar 

  128. Bruck I, Kaplan DL. Origin single-stranded DNA releases Sld3 protein from the Mcm2-7 complex, allowing the GINS tetramer to bind the Mcm2-7 complex. J Biol Chem. 2011;286:18602–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Thangavel S, Mendoza-maldonado R, Tissino E, Sidorova JM, Yin J, Wang W, et al. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol. 2010;30:1382–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Kanter DM, Kaplan DL. Sld2 binds to origin single-stranded DNA and stimulates DNA annealing. Nucleic Acids Res. 2010;39:2580–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Dhingra N, Bruck I, Smith S, Ning B, Kaplan DL. Dpb11 helps control assembly of the Cdc45-Mcm2-7-GINS replication fork helicase. J Biol Chem. 2015;290:7586–601.

    Article  PubMed  CAS  Google Scholar 

  132. Bruck I, Kanter DM, Kaplan DL. Enabling association of the GINS protein tetramer with the mini chromosome maintenance (Mcm)2-7 protein complex by phosphorylated Sld2 protein and single-stranded origin DNA. J Biol Chem. 2011;286:36414–26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Bruck I, Kaplan DL. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem. 2014;289:1948–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Yamane K, Tsuruo T. Conserved BRCT regions of TopBP1 and of the tumor suppressor BRCA1 bind strand breaks and termini of DNA. Oncogene. 1999;18:5194–203.

    Article  PubMed  CAS  Google Scholar 

  135. Xu X, Liu Y. Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J. 2009;28:568–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Macris MA, Krejci L, Bussen W, Shimamoto A, Sung P, Shimamotoc A, et al. Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair (Amst). 2006;5:172–80.

    Article  CAS  Google Scholar 

  137. Sedlackova H, Cechova B, Mlcouskova J, Krejci L. RECQ4 selectively recognizes Holliday junctions. DNA Repair (Amst). 2015;30:80–9.

    Article  CAS  Google Scholar 

  138. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol. 2012;19:837–44.

    Article  PubMed  CAS  Google Scholar 

  139. Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, et al. New insights into replication origin characteristics in metazoans. Cell Cycle. 2012;11:658–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Henderson A, Wu Y, Huang YC, Chavez EA, Platt J, Johnson FB, et al. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res. 2014;42:860–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Valton A-L, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. 2014;33:732–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Keller H, Kiosze K, Sachsenweger J, Haumann S, Ohlenschläger O, Nuutinen T, et al. The intrinsically disordered amino-terminal region of human RecQL4 : multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res. 2014;42:12614–27.

    Article  PubMed Central  PubMed  Google Scholar 

  144. Hoshina S, Yura K, Teranishi H, Kiyasu N, Tominaga A, Kadoma H, et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem. 2013;288:30161–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  145. Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21:3331–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. McIntosh D, Blow JJ. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol. 2012;4:a012955.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells. 2013;18:266–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30:4805–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Tanaka S, Araki H. Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance. PLoS Genet. 2011;7:e1002136.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013;341:893–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Pollok S, Bauerschmidt C, Sänger J, Nasheuer H-P, Grosse F. Human Cdc45 is a proliferation-associated antigen. FEBS J. 2007;274:3669–84.

    Article  PubMed  CAS  Google Scholar 

  152. Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, et al. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One. 2011;6:e17533.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Broderick R, Ramadurai S, Tóth K, Togashi DM, Ryder AG, Langowski J, et al. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy. PLoS One. 2012;7:e35537.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Srinivasan SV, Dominguez-Sola D, Wang LC, Hyrien O, Gautier J. Cdc45 is a critical effector of myc-dependent DNA replication stress. Cell Rep. 2013;3:1629–39.

    Article  PubMed  CAS  Google Scholar 

  155. Tomita Y, Imai K, Senju S, Irie A, Inoue M, Hayashida Y, et al. A novel tumor-associated antigen, cell division cycle 45-like can induce cytotoxic T-lymphocytes reactive to tumor cells. Cancer Sci. 2011;102:697–705.

    Article  PubMed  CAS  Google Scholar 

  156. Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 2007;26:2719–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Petermann E, Caldecott KW. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle. 2006;5:2203–9.

    Article  PubMed  CAS  Google Scholar 

  158. Petermann E, Woodcock M, Helleday T. Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci U S A. 2010;107:16090–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Syljuåsen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol. 2005;25:3553–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Guo C, Kumagai A, Schlacher K, Shevchenko A, Shevchenko A, Dunphy WG. Interaction of Chk1 with treslin negatively regulates the initiation of chromosomal DNA replication. Mol Cell. 2015;57:492–505.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  161. Friedel AM, Pike BL, Gasser SM. ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol. 2009;21:237–44.

    Article  PubMed  CAS  Google Scholar 

  162. Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol. 2008;9:616–27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Fritz Lipmann Institute (FLI) is member of the Science Association “Gottfried Wilhelm Leibniz” (WGL) and is financially supported by the Federal Government of Germany and the State of Thuringia. The authors are grateful to Frank Grosse for fruitful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Pospiech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pospiech, H., Szambowska, A. (2016). Assembly of the Cdc45-MCM2-7-GINS Complex, the Replication Helicase. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_19

Download citation

Publish with us

Policies and ethics