Advertisement

Role of Small-Molecule Modifiers in Replication Initiation

  • Giacomo De Piccoli
  • Agnieszka Gambus
Chapter

Abstract

Posttranslational modification of proteins through attachment of ubiquitin or ubiquitin-like proteins (UBLs) changes the three-dimensional structure of the modified factors and affects their activity, interactions, and turnover. Ubiquitin and UBLs constitute a very versatile and flexible system of protein modification and regulate almost every aspect of cell biology. In this chapter we focus on the role of these small protein modifiers in regulation of DNA replication initiation. We review the accumulated knowledge showing how ubiquitin-driven proteasomal degradation leads to creation of sequential, non-overlapping stages of the cell cycle allowing DNA replication initiation and how it prevents re-replication during S phase. We also explain the role ubiquitylation plays in the inhibition of DNA replication initiation in response to DNA damage. As the regulation of replication factors is often executed through modifications with both small protein modifiers and phosphorylation we also discuss the important crossovers between these two regulatory mechanisms. Finally, we review our present knowledge of regulation of DNA replication initiation by non-degradative forms of ubiquitylation and modifications with Nedd8 and SUMO.

Keywords

Ubiquitin SUMO Nedd8 DNA replication initiation Proteasomal degradation Posttranslational modification Cullins APC/C 

References

  1. 1.
    Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106(48):20240–5.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Gambus A, Khoudoli GA, Jones RC, Blow JJ. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem. 2011;286(13):11855–64.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  5. 5.
    Behrends C, Harper JW. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol. 2011;18(5):520–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  6. 6.
    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 2003;21(8):921–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44(2):325–40 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21(4):301–7 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].PubMedCrossRefGoogle Scholar
  9. 9.
    Zimmerman ES, Schulman BA, Zheng N. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 2010;20(6):714–21 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12(4):220 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Matyskiela ME, Rodrigo-Brenni MC, Morgan DO. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. J Biol. 2009;8(10):92.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rodrigo-Brenni MC, Morgan DO. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell. 2007;130(1):127–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Visintin R, Prinz S, Amon A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science. 1997;278(5337):460–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Fang G, Yu H, Kirschner MW. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell. 1998;2(2):163–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Pfleger CM, Kirschner MW. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 2000;14(6):655–65.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Rahal R, Amon A. Mitotic CDKs control the metaphase-anaphase transition and trigger spindle elongation. Genes Dev. 2008;22(11):1534–48.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Shirayama M, Toth A, Galova M, Nasmyth K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature. 1999;402(6758):203–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Thornton BR, Toczyski DP. Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol. 2003;5(12):1090–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Wasch R, Cross FR. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature. 2002;418(6897):556–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu D, Hsiao JY, Davey NE, Van Voorhis VA, Foster SA, Tang C, et al. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. J Cell Biol. 2014;207(1):23–39.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ferreira MF, Santocanale C, Drury LS, Diffley JF. Dbf4p, an essential S phase-promoting factor, is targeted for degradation by the anaphase-promoting complex. Mol Cell Biol. 2000;20(1):242–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Oshiro G, Owens JC, Shellman Y, Sclafani RA, Li JJ. Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol Cell Biol. 1999;19(7):4888–96.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Weinreich M, Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999;18(19):5334–46.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Jaspersen SL, Charles JF, Morgan DO. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol. 1999;9(5):227–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Robbins JA, Cross FR. Regulated degradation of the APC coactivator Cdc20. Cell Div. 2010;5:23.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sullivan M, Morgan DO. Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol. 2007;8(11):894–903.PubMedCrossRefGoogle Scholar
  27. 27.
    Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 2003;4(6):799–812.PubMedCrossRefGoogle Scholar
  28. 28.
    Moshe Y, Boulaire J, Pagano M, Hershko A. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci U S A. 2004;101(21):7937–42.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK. Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell. 2003;4(6):813–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang W, Kirschner MW. Emi1 preferentially inhibits ubiquitin chain elongation by the anaphase-promoting complex. Nat Cell Biol. 2013;15(7):797–806.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Irniger S, Nasmyth K. The anaphase-promoting complex is required in G1 arrested yeast cells to inhibit B-type cyclin accumulation and to prevent uncontrolled entry into S-phase. J Cell Sci. 1997;110(Pt 13):1523–31.PubMedGoogle Scholar
  32. 32.
    Di Fiore B, Pines J. Defining the role of Emi1 in the DNA replication-segregation cycle. Chromosoma. 2008;117(4):333–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Moreno S, Nurse P. Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature. 1994;367(6460):236–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Schwob E, Bohm T, Mendenhall MD, Nasmyth K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. 1994;79(2):233–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Landry BD, Mapa CE, Arsenault HE, Poti KE, Benanti JA. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J. 2014;33(9):1044–60.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ostapenko D, Solomon MJ. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Mol Biol Cell. 2011;22(13):2175–84.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lengronne A, Schwob E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell. 2002;9(5):1067–78.PubMedCrossRefGoogle Scholar
  38. 38.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF. Dual mode of degradation of Cdc25 A phosphatase. EMBO J. 2002;21(18):4875–84.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Pereg Y, Liu BY, O’Rourke KM, Sagolla M, Dey A, Komuves L, et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol. 2010;12(4):400–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Diffley JF, Cocker JH, Dowell SJ, Rowley A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell. 1994;78(2):303–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 2010;143(3):470–84.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature. 2012;484(7392):115–9.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Shen Z, Sathyan KM, Geng Y, Zheng R, Chakraborty A, Freeman B, et al. A WD-repeat protein stabilizes ORC binding to chromatin. Mol Cell. 2010;40(1):99–111.PubMedCrossRefGoogle Scholar
  45. 45.
    Labib K, Diffley JF, Kearsey SE. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol. 1999;1(7):415–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Nguyen VQ, Co C, Irie K, Li JJ. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Curr Biol. 2000;10(4):195–205.PubMedCrossRefGoogle Scholar
  47. 47.
    Liku ME, Nguyen VQ, Rosales AW, Irie K, Li JJ. CDK phosphorylation of a novel NLS-NES module distributed between two subunits of the Mcm2-7 complex prevents chromosomal rereplication. Mol Biol Cell. 2005;16(10):5026–39.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol. 2002;4(3):198–207 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  49. 49.
    Braun KA, Breeden LL. Nascent transcription of MCM2-7 is important for nuclear localization of the minichromosome maintenance complex in G1. Mol Biol Cell. 2007;18(4):1447–56.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature. 2000;404(6778):625–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Benjamin JM, Torke SJ, Demeler B, McGarry TJ. Geminin has dimerization, Cdt1-binding, and destruction domains that are required for biological activity. J Biol Chem. 2004;279(44):45957–68.PubMedCrossRefGoogle Scholar
  52. 52.
    McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell. 1998;93(6):1043–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Sugimoto N, Kitabayashi I, Osano S, Tatsumi Y, Yugawa T, Narisawa-Saito M, et al. Identification of novel human Cdt1-binding proteins by a proteomics approach: proteolytic regulation by APC/CCdh1. Mol Biol Cell. 2008;19(3):1007–21.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Clijsters L, Ogink J, Wolthuis R. The spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct roles in connecting mitosis to S phase. J Cell Biol. 2013;201(7):1013–26.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Piatti S, Lengauer C, Nasmyth K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a ‘reductional’ anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 1995;14(15):3788–99.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Perkins G, Drury LS, Diffley JF. Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J. 2001;20(17):4836–45.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ikui AE, Rossio V, Schroeder L, Yoshida S. A yeast GSK-3 kinase Mck1 promotes Cdc6 degradation to inhibit DNA re-replication. PLoS Genet. 2012;8(12):e1003099.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Mimura S, Seki T, Tanaka S, Diffley JF. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature. 2004;431(7012):1118–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Mailand N, Diffley JF. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell. 2005;122(6):915–26.PubMedCrossRefGoogle Scholar
  60. 60.
    Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol. 2010;12(11):1086–93 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  61. 61.
    Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME, Reinberg D. The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev. 2012;26(23):2580–9.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW, et al. Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev. 2010;24(22):2531–42.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    de Bruin RA, McDonald WH, Kalashnikova TI, Yates 3rd J, Wittenberg C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell. 2004;117(7):887–98.PubMedCrossRefGoogle Scholar
  64. 64.
    Drury LS, Perkins G, Diffley JF. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr Biol. 2000;10(5):231–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature. 2008;454(7202):291–6.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature. 2011;480(7375):128–31.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Tang X, Orlicky S, Mittag T, Csizmok V, Pawson T, Forman-Kay JD, et al. Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase. Proc Natl Acad Sci U S A. 2012;109(9):3287–92.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Zachariae W, Schwab M, Nasmyth K, Seufert W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science. 1998;282(5394):1721–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001;490(3):117–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophys Acta. 2014;1849:506–16.PubMedCrossRefGoogle Scholar
  71. 71.
    Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 1997;11(11):1464–78.PubMedCrossRefGoogle Scholar
  72. 72.
    Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol. 1999;1(4):207–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Kitagawa K, Kotake Y, Kitagawa M. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci. 2009;100(8):1374–81 [Review].PubMedCrossRefGoogle Scholar
  74. 74.
    Eldridge AG, Loktev AV, Hansen DV, Verschuren EW, Reimann JD, Jackson PK. The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell. 2006;124(2):367–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Lau AW, Inuzuka H, Fukushima H, Wan L, Liu P, Gao D, et al. Regulation of APC(Cdh1) E3 ligase activity by the Fbw7/cyclin E signaling axis contributes to the tumor suppressor function of Fbw7. Cell Res. 2013;23(7):947–61.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Rape M, Kirschner MW. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature. 2004;432(7017):588–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Fukushima H, Ogura K, Wan L, Lu Y, Li V, Gao D, et al. SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep. 2013;4(4):803–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Kishi T, Ikeda A, Koyama N, Fukada J, Nagao R. A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci U S A. 2008;105(38):14497–502.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Landry BD, Doyle JP, Toczyski DP, Benanti JA. F-box protein specificity for g1 cyclins is dictated by subcellular localization. PLoS Genet. 2012;8(7):e1002851.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell. 2006;24(3):355–66.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Vaites LP, Lee EK, Lian Z, Barbash O, Roy D, Wasik M, et al. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol Cell Biol. 2011;31(22):4513–23.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Marti A, Wirbelauer C, Scheffner M, Krek W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol. 1999;1(1):14–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294(5540):173–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature. 2001;411(6841):1068–73 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  85. 85.
    Devault A, Vallen EA, Yuan T, Green S, Bensimon A, Schwob E. Identification of Tah11/Sid2 as the ortholog of the replication licensing factor Cdt1 in Saccharomyces cerevisiae. Curr Biol. 2002;12(8):689–94 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  86. 86.
    Wilmes GM, Archambault V, Austin RJ, Jacobson MD, Bell SP, Cross FR. Interaction of the S-phase cyclin Clb5 with an “RXL” docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev. 2004;18(9):981–91.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Yanow SK, Lygerou Z, Nurse P. Expression of Cdc18/Cdc6 and Cdt1 during G2 phase induces initiation of DNA replication. EMBO J. 2001;20(17):4648–56 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Arias EE, Walter JC. Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev. 2005;19(1):114–26 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Li A, Blow JJ. Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J. 2005;24(2):395–404 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Yoshida K, Takisawa H, Kubota Y. Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells. 2005;10(1):63–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhu W, Chen Y, Dutta A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol. 2004;24(16):7140–50 [Research Support, U.S. Gov’t, P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell. 2002;9(3):481–91 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  93. 93.
    McNairn AJ, Okuno Y, Misteli T, Gilbert DM. Chinese hamster ORC subunits dynamically associate with chromatin throughout the cell-cycle. Exp Cell Res. 2005;308(2):345–56 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Kim J, Kipreos ET. Control of the Cdc6 replication licensing factor in metazoa: the role of nuclear export and the CUL4 ubiquitin ligase. Cell Cycle. 2008;7(2):146–50 [Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  95. 95.
    Abbas T, Shibata E, Park J, Jha S, Karnani N, Dutta A. CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell. 2010;40(1):9–21 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129(4):665–79 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  97. 97.
    Jin J, Arias EE, Chen J, Harper JW, Walter JC. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell. 2006;23(5):709–21 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  98. 98.
    Guarino E, Shepherd ME, Salguero I, Hua H, Deegan RS, Kearsey SE. Cdt1 proteolysis is promoted by dual PIP degrons and is modulated by PCNA ubiquitylation. Nucleic Acids Res. 2011;39(14):5978–90 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Havens CG, Shobnam N, Guarino E, Centore RC, Zou L, Kearsey SE, et al. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. J Biol Chem. 2012;287(14):11410–21 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Abbas T, Dutta A. CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle. 2011;10(2):241–9 [Research Support, N.I.H., Extramural Review].PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Havens CG, Walter JC. Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell. 2009;35(1):93–104 [Research Support, N.I.H., Extramural].PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Michishita M, Morimoto A, Ishii T, Komori H, Shiomi Y, Higuchi Y, et al. Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4(Cdt2) -mediated proteolysis. Genes Cells. 2011;16(1):12–22 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  103. 103.
    Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 2004;279(17):17283–8 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  104. 104.
    Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, et al. Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem. 2004;279(19):19691–7 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  105. 105.
    Nishitani H, Lygerou Z, Nishimoto T. Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J Biol Chem. 2004;279(29):30807–16 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  106. 106.
    Takeda DY, Parvin JD, Dutta A. Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem. 2005;280(24):23416–23 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  107. 107.
    Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 2006;25(5):1126–36 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Johansson P, Jeffery J, Al-Ejeh F, Schulz RB, Callen DF, Kumar R, et al. SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem. 2014;289(26):18514–25 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Drury LS, Diffley JF. Factors affecting the diversity of DNA replication licensing control in eukaryotes. Curr Biol. 2009;19(6):530–5 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  110. 110.
    Kominami K, Toda T. Fission yeast WD-repeat protein pop1 regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum1 and the S-phase initiator Cdc18. Genes Dev. 1997;11(12):1548–60 [Comparative Study Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  111. 111.
    Kominami K, Ochotorena I, Toda T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin-1-F-box) ubiquitin ligase. Genes Cells. 1998;3(11):721–35 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  112. 112.
    Drury LS, Perkins G, Diffley JF. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 1997;16(19):5966–76.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: a biochemical analysis. Mol Biol Cell. 1999;10(10):3263–77.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Williams RS, Shohet RV, Stillman B. A human protein related to yeast Cdc6p. Proc Natl Acad Sci U S A. 1997;94(1):142–7 [Comparative Study Research Support, U.S. Gov’t, P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Saha P, Chen J, Thome KC, Lawlis SJ, Hou ZH, Hendricks M, et al. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol. 1998;18(5):2758–67 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Clijsters L, Wolthuis R. PIP-box-mediated degradation prohibits re-accumulation of Cdc6 during S phase. J Cell Sci. 2014;127(Pt 6):1336–45 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  117. 117.
    Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T. CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem. 2008;283(43):29045–52 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Lygerou Z, Nurse P. The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J Cell Sci. 1999;112(Pt 21):3703–12 [Research Support, Non-U.S. Gov’t].PubMedGoogle Scholar
  119. 119.
    Wuarin J, Buck V, Nurse P, Millar JB. Stable association of mitotic cyclin B/Cdc2 to replication origins prevents endoreduplication. Cell. 2002;111(3):419–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Li CJ, DePamphilis ML. Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol Cell Biol. 2002;22(1):105–16.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Kreitz S, Ritzi M, Baack M, Knippers R. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells. J Biol Chem. 2001;276(9):6337–42 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  122. 122.
    Tatsumi Y, Ohta S, Kimura H, Tsurimoto T, Obuse C. The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1. J Biol Chem. 2003;278(42):41528–34 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  123. 123.
    Shen Z, Chakraborty A, Jain A, Giri S, Ha T, Prasanth KV, et al. Dynamic association of ORCA with prereplicative complex components regulates DNA replication initiation. Mol Cell Biol. 2012;32(15):3107–20 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Shen Z, Prasanth SG. Orc2 protects ORCA from ubiquitin-mediated degradation. Cell Cycle. 2012;11(19):3578–89 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON, et al. The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol. 2007;179(7):1337–45 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Tardat M, Murr R, Herceg Z, Sardet C, Julien E. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J Cell Biol. 2007;179(7):1413–26 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, et al. CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell. 2010;40(1):22–33 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Liu C, Poitelea M, Watson A, Yoshida SH, Shimoda C, Holmberg C, et al. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. EMBO J. 2005;24(22):3940–51 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Salguero I, Guarino E, Shepherd ME, Deegan TD, Havens CG, MacNeill SA, et al. Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen. Curr Biol. 2012;22(8):720–6 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Moss J, Tinline-Purvis H, Walker CA, Folkes LK, Stratford MR, Hayles J, et al. Break-induced ATR and Ddb1-Cul4(Cdt)(2) ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes Dev. 2010;24(23):2705–16 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Gunjan A, Verreault A. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell. 2003;115(5):537–49.PubMedCrossRefGoogle Scholar
  132. 132.
    Singh RK, Kabbaj MH, Paik J, Gunjan A. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol. 2009;11(8):925–33.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Abbas T, Mueller AC, Shibata E, Keaton M, Rossi M, Dutta A. CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol Cell. 2013;49(6):1147–58 [Research Support, N.I.H., Extramural].PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Rossi M, Duan S, Jeong YT, Horn M, Saraf A, Florens L, et al. Regulation of the CRL4(Cdt2) ubiquitin ligase and cell-cycle exit by the SCF(Fbxo11) ubiquitin ligase. Mol Cell. 2013;49(6):1159–66 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Dar A, Wu D, Lee N, Shibata E, Dutta A. 14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation. Mol Cell Biol. 2014;34(21):4049–61 [Research Support, N.I.H., Extramural].PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol. 2004;5(10):792–804 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  137. 137.
    Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 2001;13(6):738–47 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  138. 138.
    Yekezare M, Gomez-Gonzalez B, Diffley JF. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci. 2013;126(Pt 6):1297–306 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  139. 139.
    Busino L, Chiesa M, Draetta GF, Donzelli M. Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene. 2004;23(11):2050–6 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  140. 140.
    Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410(6830):842–7 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  141. 141.
    Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  142. 142.
    Midgley CA, Lane DP. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene. 1997;15(10):1179–89 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  143. 143.
    Branzei D, Foiani M. The DNA damage response during DNA replication. Curr Opin Cell Biol. 2005;17(6):568–75 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  144. 144.
    Smith J, Tho LM, Xu N, Gillespie DA. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 2010;108:73–112 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  145. 145.
    Ge XQ, Blow JJ. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol. 2010;191(7):1285–97 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature. 2010;467(7314):479–83 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Zegerman P, Diffley JF. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010;467(7314):474–8 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Boos D, Yekezare M, Diffley JF. Identification of a heteromeric complex that promotes DNA replication origin firing in human cells. Science. 2013;340(6135):981–4 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  149. 149.
    Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, et al. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol. 2011;21(13):1152–7 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  150. 150.
    Honaker Y, Piwnica-Worms H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene. 2010;29(23):3324–34 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Havens CG, Walter JC. Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Genes Dev. 2011;25(15):1568–82 [Research Support, N.I.H., Extramural Review].PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Hall JR, Lee HO, Bunker BD, Dorn ES, Rogers GC, Duronio RJ, et al. Cdt1 and Cdc6 are destabilized by rereplication-induced DNA damage. J Biol Chem. 2008;283(37):25356–63 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Hall JR, Kow E, Nevis KR, Lu CK, Luce KS, Zhong Q, et al. Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. Mol Biol Cell. 2007;18(9):3340–50 [Research Support, N.I.H., Extramural].PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Kumar S, Tomooka Y, Noda M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 1992;185(3):1155–61 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  155. 155.
    Rabut G, Peter M. Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9(10):969–76 [Review].PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Parry G, Estelle M. Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol. 2004;15(2):221–9 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review].PubMedCrossRefGoogle Scholar
  157. 157.
    Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, et al. A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res. 2008;7(3):1274–87 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene. 2004;23(11):1985–97 [Research Support, U.S. Gov’t, P.H.S. Review].PubMedCrossRefGoogle Scholar
  159. 159.
    Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell. 2008;134(6):995–1006 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell. 2004;119(4):517–28 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  161. 161.
    Feng H, Zhong W, Punkosdy G, Gu S, Zhou L, Seabolt EK, et al. CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol. 1999;1(8):486–92 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  162. 162.
    Craney A, Rape M. Dynamic regulation of ubiquitin-dependent cell cycle control. Curr Opin Cell Biol. 2013;25(6):704–10 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].PubMedCrossRefGoogle Scholar
  163. 163.
    Cukras S, Morffy N, Ohn T, Kee Y. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases. PLoS One. 2014;9(7):e101844 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 2010;70(24):10310–20 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Watson IR, Irwin MS. Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia. 2006;8(8):655–66 [Research Support, Non-U.S. Gov’t Review].PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 2004;118(1):83–97 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  168. 168.
    Xirodimas DP. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem Soc Trans. 2008;36(Pt 5):802–6 [Research Support, Non-U.S. Gov’t Review].PubMedCrossRefGoogle Scholar
  169. 169.
    Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell. 2013;49(5):795–807.PubMedCrossRefGoogle Scholar
  170. 170.
    Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–82.PubMedCrossRefGoogle Scholar
  171. 171.
    Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998;2(2):233–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 2007;26(18):4089–101.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Sun H, Leverson JD, Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 2007;26(18):4102–12.PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Stehmeier P, Muller S. Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst). 2009;8(4):491–8 [Review].CrossRefGoogle Scholar
  175. 175.
    Li T, Santockyte R, Shen RF, Tekle E, Wang G, Yang DC, et al. Expression of SUMO-2/3 induced senescence through p53- and pRB-mediated pathways. J Biol Chem. 2006;281(47):36221–7.PubMedCrossRefGoogle Scholar
  176. 176.
    Chang PC, Izumiya Y, Wu CY, Fitzgerald LD, Campbell M, Ellison TJ, et al. Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. J Biol Chem. 2010;285(8):5266–73 [Research Support, N.I.H., Extramural].PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH. MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle. 2011;10(18):3176–88 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Bonne-Andrea C, Kahli M, Mechali F, Lemaitre JM, Bossis G, Coux O. SUMO2/3 modification of cyclin E contributes to the control of replication origin firing. Nat Commun. 2013;4:1850 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Dou H, Huang C, Singh M, Carpenter PB, Yeh ET. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell. 2010;39(3):333–45 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell. 2012;45(3):422–32 [Research Support, N.I.H., Extramural].PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates 3rd JR, et al. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Mol Cell Proteomics. 2014;13(7):1659–75 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ, et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 2003;17(24):3062–74 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J, et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell. 2008;30(3):290–302.PubMedCrossRefGoogle Scholar
  184. 184.
    Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP. Skp2 regulates Myc protein stability and activity. Mol Cell. 2003;11(5):1177–88.PubMedCrossRefGoogle Scholar
  185. 185.
    von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11(5):1189–200.PubMedCrossRefGoogle Scholar
  186. 186.
    Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A. 2004;101(24):9085–90.PubMedCentralPubMedCrossRefGoogle Scholar
  187. 187.
    Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23(10):2116–25.PubMedCentralPubMedCrossRefGoogle Scholar
  188. 188.
    Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature. 2004;428(6979):190–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Warwick Medical SchoolUniversity of WarwickCoventryUK
  2. 2.School of Cancer SciencesUniversity of BirminghamBirminghamUK

Personalised recommendations