Advertisement

Introduction to Eukaryotic DNA Replication Initiation

  • Nalini Dhingra
  • Daniel L. Kaplan
Chapter

Abstract

Every time a cell divides, a copy of its genomic DNA has to be faithfully copied to generate new genomic DNA for the daughter cells. The process of DNA replication needs to be precisely regulated to ensure that replication of the genome is complete and accurate, but that re-replication does not occur. Errors in DNA replication can lead to genome instability and cancer. The process of replication initiation is of paramount importance, because once the cell is committed to replicate DNA, it is optimal to complete replication with minimal errors. Furthermore, agents that inhibit DNA replication initiation are now being targeted for cancer therapy. A great deal of progress has been made in understanding how DNA replication is initiated in eukaryotic cells in the past 10 years. This chapter introduces how the position of replication initiation, called the replication origin, is chosen. This chapter also introduces how replication initiation is integrated with the phases of the cell cycle, and how replication initiation is regulated in the case of damage to DNA. It is the cellular protein machinery that enables replication initiation to be activated and regulated. We now have an in-depth understanding of how cellular proteins work together to start DNA replication. A mechanistic description of DNA replication initiation is introduced in this chapter as well.

Keywords

Origin Initiation DNA replication Helicase Polymerase Kinase DNA damage Checkpoint Cell cycle Replication fork 

References

  1. 1.
    Newlon CS, Theis JF. The structure and function of yeast ARS elements. Curr Opin Gen Dev. 1993;3:752–8.CrossRefGoogle Scholar
  2. 2.
    Huang R, Kowalski D. A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J. 1993;12:4521–31.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Nieduszynski C, Knox Y, Donaldson A. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 2006;20:1874–9.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol. 2015;208:147–60.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Rhind N, Gilbert D. DNA replication timing. Cold Spring Harb Perspect Biol. 2013;5:a010132.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Ding Q, MacAlpine D. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol. 2011;46:165–79.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    MacAlpine D, Almouzni G. Chromatin and DNA replication. Cold Spring Harb Perspect Biol. 2013;5:a010207.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Ma E, Hyrien O, Goldar A. Do replication forks control late origin firing in Saccharomyces cerevisiae? Nucleic Acids Res. 2012;40:2010–9.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Aparicio O. Location, location, location: it’s all in the timing for replication origins. Genes Dev. 2013;27:117–28.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Peace J, Ter-Zakarian A, Aparicio O. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9:e98501.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30:4805–14.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Pope B, Gilbert D. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J Mol Biol. 2013;425:4690–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Pope B, Hiratani I, Gilbert D. Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res. 2010;18:127–36.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Whitehouse I, Smith DJ. Chromatin dynamics at the replication fork: there’s more to life than histones. Curr Opin Genet Dev. 2013;23(2):140–6.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Bell S, Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 1992;357:128–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Costa A, Hood I, Berger J. Mechanisms for initiating cellular DNA replication. Annu Rev Biochem. 2013;82:25–54.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hemerly A, Prasanth S, Siddiqui K, Stillman B. Orc1 controls centriole and centrosome copy number in human cells. Science. 2009;323:789–93.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Hoggard T, Shor E, Müller C, Nieduszynski C, Fox C. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet. 2013;9:e1003798.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    McIntosh D, Blow J. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol. 2012;4:a012955.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Hossain M, Stillman B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev. 2012;26:1797–810.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Shen Z. The origin recognition complex in human diseases. Biosci Rep. 2013;33:e00044.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Bicknell L, Bongers E, Leitch A, Brown S, Schoots J, Harley M, et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat Genet. 2011;43:356–9.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Guernsey D, Matsuoka M, Jiang H, Evans S, Macgillivray C, Nightingale M, et al. Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome. Nat Genet. 2011;43:360–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Bleichert F, Balasov M, Chesnokov I, Nogales E, Botchan M, Berger J. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation. Elife. 2013;2:e00882.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Maine G, Sinha P, Tye B. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106:365–85.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Davey MJ, Indiani C, O’Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J Biol Chem. 2003;278:4491–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Bochman M, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31:287–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Coster G, Frigola J, Beuron F, Morris E, Diffley J. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell. 2014;55:666–77.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol. 2014;30:104–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A, et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173(5):673–83.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Remus D, Beuron F, Tolun G, Griffith J, Morris E, Diffley J. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–30.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, et al. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev. 2014;28:2291.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Samel S, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera M, et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 2014;28:1653–66.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol. 2013;5:a010371.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma. 2015;124:13.CrossRefPubMedGoogle Scholar
  36. 36.
    Hardy CFJ, Dryga O, Seematter S, Pahl PMB, Sclafani RA. mcm5/cdc46-bob1 bypasses the requirement for the S phase activatorCdc7p. Proc Natl Acad Sci U S A. 1997;94:3151–5.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Sclafani R, Tecklenburg M, Pierce A. The mcm5-bob1 bypass of Cdc7p/Dbf4p in DNA replication depends on both Cdk-1 independent and Cdk-1-dependent steps in Saccharomyces cerevisiae. Genetics. 2002;161:47–57.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Sheu Y, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463:113–7.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Sheu Y-J, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docing site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24:101–13.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Sclafani R, Holzen T. Cell cycle regulation of DNA replication. Annu Rev Genet. 2007;41:237–80.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Hoang ML, Leon RP, Pessoa-Brandao L, Hunt S, Raghuraman MK, Fangman WL, et al. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in S. cerevisiae. Mol Cell Biol. 2007;27:7594–602.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem. 2015;290:1210–21.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Hiraga S, Alvino G, Chang F, Lian H, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28:372–83.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7:53–61.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Chen S, Bell S. CDK prevents Mcm2-7 helicase loading by inhibiting Cdt1 interaction with Orc6. Genes Dev. 2011;25:363–72.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445(7125):328–32.CrossRefPubMedGoogle Scholar
  47. 47.
    Kanter D, Kaplan D. Sld2 binds to origin single-stranded DNA and stimulates DNA annealing. Nucleic Acids Res. 2011;39:2580–92.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Zegerman P, Diffley JF. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445(7125):281–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Muramatsu S, Hirai K, Tak Y, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon}, and GINS in budding yeast. Genes Dev. 2010;24:602–12.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Araki H, Leem S, Phongdara A, Sugino A. Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci U S A. 1995;92:11791–5.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Kamimura Y, Tak YS, Sugino A, Araki H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 2001;20(8):2097–107.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Bruck I, Kaplan D. GINS and Sld3 compete with one another for Mcm2-7 and Cdc45 binding. J Biol Chem. 2011;286:14157–67.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Dhingra N, Bruck I, Smith S, Ning B, Kaplan D. Dpb11 helps control assembly of the Cdc45-Mcm2-7-GINS replication fork helicase. J Biol Chem. 2015;290:7586.CrossRefPubMedGoogle Scholar
  54. 54.
    Bruck I, Kanter DM, Kaplan DL. Enabling association of the GINS tetramer with the Mcm2-7 complex by phosphorylated Sld2 protein and single-stranded origin DNA. J Biol Chem. 2011;286:36414–26.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Bruck I, Kaplan D. The replication initiation protein sld2 regulates helicase assembly. J Biol Chem. 2014;289:1948–59.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Bruck I, Kaplan D. Origin single-stranded DNA releases Sld3 protein from the Mcm2-7 complex, allowing the GINS tetramer to bind the Mcm2-7 complex. J Biol Chem. 2011;286:18602–13.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Van Hatten RA, Tutter AV, Holway AH, Khederian AM, Walter JC, Michael WM. The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol. 2002;159:541–7.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, et al. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol. 2011;21(13):1152–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, et al. The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res. 2012;40:8309–24.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma. 2015;124:309.CrossRefPubMedGoogle Scholar
  61. 61.
    Alver R, Zhang T, Josephrajan A, Fultz B, Hendrix C, Das-Bradoo S, et al. The N-terminus of Mcm10 is important for interaction with the 9-1-1 clamp and in resistance to DNA damage. Nucleic Acids Res. 2014;42:8389–404.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J. 2012;31(9):2195–206.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Watase G, Takisawa H, Kanemaki M. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol. 2012;22:343–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J. 2012;31(9):2182–94.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Thu YM, Bielinsky AK. Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci. 2013;38(4):184–94.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Thu YM, Bielinsky AK. MCM10: one tool for all-Integrity, maintenance and damage control. Semin Cell Dev Biol. 2014;30:121–30.CrossRefPubMedGoogle Scholar
  67. 67.
    Onesti S, MacNeill SA. Structure and evolutionary origins of the CMG complex. Chromosoma. 2013;122(1-2):47–53.CrossRefPubMedGoogle Scholar
  68. 68.
    Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S. Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem. 2012;287(6):4121–8.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Bruck I, Kaplan DL. Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem. 2013;288(11):7550–63.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, et al. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res. 2014;42:2308–19.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17(9):1153–65.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 2003;17(9):1141–52.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Boskovic J, Coloma J, Aparicio T, Zhou M, Robinson CV, Méndez J, et al. Molecular architecture of the human GINS complex. EMBO Rep. 2007;8(7):678–84.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol. 2007;14(5):388–96.CrossRefPubMedGoogle Scholar
  75. 75.
    Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS. Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci U S A. 2007;104(31):12685–90.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247–58.CrossRefPubMedGoogle Scholar
  77. 77.
    Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18(4):471–7.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Kang Y, Galal W, Farina A, Tappin I. J. H. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase {varepsilon} in rolling circle DNA synthesis. Proc Natl Acad Sci U S A. 2012;109:6042–7.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.CrossRefPubMedGoogle Scholar
  80. 80.
    Hustedt N, Gasser SM, Shimada K. Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel). 2013;4(3):388–434.Google Scholar
  81. 81.
    Recolin B, van der Laan S, Tsanov N, Maiorano D. Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel). 2014;5(1):147–75.Google Scholar
  82. 82.
    Navadgi-Patil VM, Burgers PM. Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. Biochem Soc Trans. 2011;39(2):600–5.CrossRefPubMedGoogle Scholar
  83. 83.
    Navadgi-Patil VM, Kumar S, Burgers PM. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint. J Biol Chem. 2011;286(47):40999–1007.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell. 2012;45(3):422–32.PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Segurado M, Tercero JA. The S-phase checkpoint: targeting the replication fork. Biol Cell. 2009;101:617–27.CrossRefPubMedGoogle Scholar
  86. 86.
    Kumar S, Burgers PM. Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes Dev. 2013;27(3):313–21.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Labib K, Piccoli GD. Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Phil Trans R Soc B. 2011;366:3554–61.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Zegerman P, Diffley JF. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010;467(7314):474–8.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol Cell. 2012;45:699–704.Google Scholar
  90. 90.
    Anand RP, Lovett ST, Haber JE. Break-induced DNA replication. Cold Spring Harb Perspect Biol. 2013;5(12):a010397.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, Haber JE. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 2010;24(11):1133–44.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Malkova A, Ira G. Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev. 2013;23(3):271–9.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeUSA

Personalised recommendations