Advertisement

Anthropometrics and Body Composition

  • Dympna GallagherEmail author
  • Claire Alexander
  • Adam Paley
Chapter

Abstract

The measurement of body composition in clinical practice has relevance for identifying clinical conditions that warrant intervention. When body tissues are lost or gained as a result of an intervention (e.g., nutritional, physical activity, or medication), it can be clinically important and meaningful to quantify the specific changes as a means of monitoring the effects of the intervention. When monitoring the effects of a clinical intervention, knowledge of changes in total body values for fat or lean tissues may not be as informative as region or site-specific values. Body composition measurement methods vary in complexity, cost and precision, and range from simple field-based methods to more technically challenging laboratory-based methods.

Keywords

Body composition Method Measurement Human In-vivo Fat Adipose Lean Fat-free mass Weight loss 

Abbreviations

AA

African-American

ASM

Appendicular skeletal muscle

BD

Body density

BH

Body height

BIA

Bioimpedance analysis

BMI

Body mass index

BW

Body weight

C

Caucasian

CAG

Corrected arm girth

CCG

Corrected calf girth

CT

Computed tomography

CTG

Corrected thigh girth

CVD

Cardiovascular disease

DXA

Dual-energy X-ray absorptiometry

EA

European-American

HA

Hispanic-American

IMAT

Intermuscular adipose tissue

MRI

Magnetic resonance imaging

NIH

National Institutes of Health

R

Resistance

S

Stature

SM

Skeletal muscle

TBBM

Total body bone mineral

TBW

Total body water

VAT

Visceral adipose tissue

WHR

Waist–hip ratio

WHO

World Health Organization

References

  1. 1.
    Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C; American Heart Association; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–8. (Review. PubMed PMID:14744958).CrossRefPubMedGoogle Scholar
  2. 2.
    Zeng Q, He Y, Dong S, Zhao X, Chen Z, Song Z, Chang G, Yang F, Wang Y. Optimal cut-off values of BMI, waist circumference and waist:height ratio for defining obesity in Chinese adults. Br J Nutr. 2014;112(10):1735–44. doi:10.1017/S0007114514002657. (Epub 2014 Oct 10. PubMed PMID: 25300318).CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization (editor). Obesity: preventing and managing the global epidemic. Report of a WHO consultation on obesity. Geneva, June 3–5, 1997. Geneva: WHO; 1998.Google Scholar
  4. 4.
    US Department of Health and Human Services (editor). Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Washington, DC: US DHHS; 1998. pp. 98–4083.Google Scholar
  5. 5.
    Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr. 2002;75(6):978–85.PubMedGoogle Scholar
  6. 6.
    Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996;143(3):228–39.CrossRefPubMedGoogle Scholar
  7. 7.
    Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694–701.PubMedGoogle Scholar
  8. 8.
    Fernández JR, Heo M, Heymsfield SB, Pierson RN Jr, Pi-Sunyer FX, Wang ZM, Wang J, Hayes M, Allison DB, Gallagher D. Is percentage body fat differentially related to body mass index in Hispanic Americans, African Americans, and European Americans? Am J Clin Nutr. 2003;77(1):71–5. (PubMed PMID: 12499325).Google Scholar
  9. 9.
    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.CrossRefPubMedGoogle Scholar
  10. 10.
    Jackson AS, Ellis KJ, McFarlin BK, Sailors MH, Bray MS. Cross-validation of generalised body composition equations with diverse young men and women: the Training Intervention and Genetics of Exercise Response (TIGER) Study. Br J Nutr. 2009;101(6):871–8. (PubMed: 18702849).CrossRefPubMedGoogle Scholar
  11. 11.
    Davidson LE, Wang J, Thornton JC, Kaleem Z, Silva-Palacios F, Pierson RN, Heymsfield SB, Gallagher D. Predicting fat percent by skinfolds in racial groups: Durnin and Womersley revisited. Med Sci Sports Exerc. 2011;43(3):542–9. doi:10.1249/MSS.0b013e3181ef3f07. (PubMed PMID: 20689462; PMCID: PMC3308342).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr. 2000;72(3):796–803. (Erratum in: Am J Clin Nutr 2001 May;73(5):995. PubMed PMID: 10966902).PubMedGoogle Scholar
  13. 13.
    Al-Gindan YY, Hankey C, Govan L, Gallagher D, Heymsfield SB, Lean ME. Derivation and validation of simple equations to predict total muscle mass from simple anthropometric and demographic data. Am J Clin Nutr. 2014;100(4):1041–51. doi:10.3945/ajcn.113.070466. (Epub 2014 Aug 13. PubMed PMID: 25240071).CrossRefPubMedGoogle Scholar
  14. 14.
    Baumgartner RN. Electrical impedance and total body electrical conductivity. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human body composition. Champaign: Human Kinetics; 1996. pp. 79–102.Google Scholar
  15. 15.
    Bosy-Westphal A, Schautz B, Later W, Kehayias JJ, Gallagher D, Müller MJ. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013;67(Suppl 1):S14–21. doi:10.1038/ejcn.2012.160. (PubMed PMID: 23299866).CrossRefPubMedGoogle Scholar
  16. 16.
    Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol. 1985, 2000;89(2):465–71. (PubMed PMID: 10926627).Google Scholar
  17. 17.
    Shih R, Wang Z, Heo M, Wang W, Heymsfield SB. Lower limb skeletal muscle mass: development of dual-energy X-ray absorptiometry prediction model. J Appl Physiol. 2000;89(4):1380–6.PubMedGoogle Scholar
  18. 18.
    Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body muscle mass: estimation by new dual-energy X-ray absorptimetry method. Am J Clin Nutr. 2002;76(2):378–83.PubMedGoogle Scholar
  19. 19.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63. (Erratum in: Am J Epidemiol 1999 Jun 15;149(12):1161. PubMed PMID: 9554417).Google Scholar
  20. 20.
    Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62(2):253–60. doi:10.1111/jgs.12652. (Epub 2014 Jan 15. PubMed PMID: 24428349; PubMed Central PMCID: PMC4234002).CrossRefPubMedGoogle Scholar
  21. 21.
    Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc. 2015;27:1–8. ((Epub ahead of print) PubMed PMID: 25913270).Google Scholar
  22. 22.
    Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547–58. doi:10.1093/gerona/glu010. (PubMed PMID: 24737557; PMCID: PMC3991146).Google Scholar
  23. 23.
    Dam TT, Peters KW, Fragala M, Cawthon PM, Harris TB, McLean R, Shardell M, Alley DE, Kenny A, Ferrucci L, Guralnik J, Kiel DP, Kritchevsky S, Vassileva MT, Studenski S. An evidence-based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci. 2014;69(5):584–90. doi:10.1093/gerona/glu013. (PubMed PMID: 24737561; PMCID: PMC3991139).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27:1692–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Gallagher D, Kovera AJ, Clay-Williams G, Agin D, Leone P, Albu J, Matthews DE, Heymsfield SB. Weight loss in postmenopausal obesity: no adverse alterations in body composition and protein metabolism. Am J Physiol Endocrinol Metab. 2000;279(1):E124–31. (PubMed PMID: 10893331).Google Scholar
  26. 26.
    Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes. 1997;46(10):1579–85. (PubMed PMID: 9313753).CrossRefPubMedGoogle Scholar
  27. 27.
    Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB. Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol. 1985, 2001;90(6):2157–65. (PubMed PMID: 11356778).Google Scholar
  28. 28.
    Mazariegos M, Wang ZM, Gallagher D, Baumgartner RN, Allison DB, Wang J, Pierson RN Jr, Heymsfield SB. Differences between young and old females in the five levels of body composition and their relevance to the two-compartment chemical model. J Gerontol 1994;49(5):M201–8.CrossRefGoogle Scholar
  29. 29.
    Heymsfield SB, Wang Z, Baumgartner RN, Dilmanian FA, Ma R, Yasumura S. Body composition and aging: a study by in vivo neutron activation analysis. J Nutr. 1993;123(2 Suppl):432–7.PubMedGoogle Scholar
  30. 30.
    Pierson RN Jr, Lin DH, Phillips RA. Total-body potassium in health: effects of age, sex, height, and fat. Am J Physiol. 1974;226(1):206–12.PubMedGoogle Scholar
  31. 31.
    Cohn SH, Abesamis C, Zanzi I, Aloia JF, Yasumura S, Ellis KJ. Body elemental composition: comparison between black and white adults. Am J Physiol. 1977;232(4):E419–22.PubMedGoogle Scholar
  32. 32.
    Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, Pierson RN, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol. 1997;83(1):229–39.PubMedGoogle Scholar
  33. 33.
    Shen W, Punyanitya M, Silva AM, Chen J, Gallagher D, Sardinha LB, Allison DB, Heymsfield SB. Sexual dimorphism of adipose tissue distribution across the lifespan: a cross-sectional whole-body magnetic resonance imaging study. Nutr Metab (Lond). 2009;6:17. doi:10.1186/1743-7075-6-17. (PMID: 19371437; PMCID: PMC2678136).CrossRefGoogle Scholar
  34. 34.
    Gallagher D, Kuznia P, Heshka S, Albu J, Heymsfield SB, Goodpaster B, Visser M, Harris TB. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr. 2005;81(4):903–10. (PubMed PMID: 15817870; PubMed Central PMCID: PMC1482784).PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gallagher D, Kelley DE, Yim JE, Spence N, Albu J, Boxt L, Pi-Sunyer FX, Heshka S; MRI Ancillary Study Group of the Look AHEAD Research Group. Adipose tissue distribution is different in type 2 diabetes. Am J Clin Nutr. 2009;89(3):807–14. doi:10.3945/ajcn.2008.26955. (Epub 2009 Jan 21. PubMed PMID: 19158213; PubMed Central PMCID: PMC2714397).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Peterson MJ, Czerwinski SA, Siervogel RM. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am J Clin Nutr. 2003;77(5):1186–91. (PubMed PMID: 12716670).PubMedGoogle Scholar
  37. 37.
    Forsyth HL, Sinning WE. The anthropometric estimation of body density and lean body weight of male athletes. Med Sci Sports. 1973;5(3):174–80. (PubMed PMID: 4747639).Google Scholar
  38. 38.
    Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12:175–82.PubMedGoogle Scholar
  39. 39.
    Katch FI, McArdle WD. Prediction of body density from simple anthropometric measurements in college-age men and women. Hum Biol. 1973;45(3):445–55. (PubMed PMID: 4750412).PubMedGoogle Scholar
  40. 40.
    Wilmore JH, Behnke AR. An anthropometric estimation of body density and lean body weight in young men. J Appl Physiol. 1969;27(1):25–31. (PubMed PMID: 5786965).CrossRefPubMedGoogle Scholar
  41. 41.
    Baumgartner RN, Heymsfield SB, Lichtman S, Wang J, Pierson RN Jr. Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr. 1991;53(6):1345–53. (PubMed PMID: 2035461).PubMedGoogle Scholar
  42. 42.
    Deurenberg P, van der Kooy K, Leenen R, Weststrate JA, Seidell JC. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes. 1991;15(1):17–25. (PubMed PMID: 2010255).PubMedGoogle Scholar
  43. 43.
    Segal KR, Gutin B, Presta E, Wang J, Van Itallie TB. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol. 1985;58(5):1565–71. (PubMed PMID: 3997721).PubMedGoogle Scholar
  44. 44.
    Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr. 1988;47(1):7–14. (PubMed PMID: 3337041).PubMedGoogle Scholar
  45. 45.
    Siri WE. The gross composition of the body. Adv Biol. Med Phys. 1956;4:239–80. (PubMed PMID: 13354513).Google Scholar
  46. 46.
    Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci. 1963;110:113–40.CrossRefPubMedGoogle Scholar
  47. 47.
    Schutte JE, Townsend EJ, Hugg J, Shoup RF, Malina RM, Blomqvist CG. Density of lean body mass is greater in blacks than in whites. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(6):1647–9. (PubMed PMID: 6735823).PubMedGoogle Scholar
  48. 48.
    Ortiz O, Russell M, Daley TL, Baumgartner RN, Waki M, Lichtman S, et al. Differences in skeletal muscle and bone mineral mass between black and white females and their relevance to estimates of body composition. Am J Clin Nutr. 1992;55(1):8–13.PubMedGoogle Scholar
  49. 49.
    Lohman TG. Human body composition. Champaign: Human Kinetics; 1996.Google Scholar
  50. 50.
    Selinger A. The body as a three component system. PhD thesis. Urbana: University of Illinois; 1977.Google Scholar
  51. 51.
    Heymsfield SB, Lichtman S, Baumgartner RN, Wang J, Kamen Y, Aliprantis A, Pierson RN Jr. Body composition of humans: comparison of two improved four-compartment models that differ in expense, technical complexity, and radiation exposure. Am J Clin Nutr. 1990;52(1):52–8. (PubMed PMID: 2360552).PubMedGoogle Scholar
  52. 52.
    Withers RT, Smith DA, Chatterton BE, Schultz CG, Gaffney RD. A comparison of four methods of estimating the body composition of male endurance athletes. Eur J Clin Nutr. 1992;46(11):773–84. (PubMed PMID: 1425531).PubMedGoogle Scholar
  53. 53.
    Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC, Couch W, Czerwinski SA, Chumlea WC, Siervogel RM, Towne B. Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity (Silver Spring). 2007;15(12):2984–93. doi:10.1038/oby.2007.356. (PubMed PMID: 18198307; PubMed Central PMCID: PMC2883307).CrossRefGoogle Scholar
  54. 54.
    Scheuer SH, Færch K, Philipsen A, Jørgensen ME, Johansen NB, Carstensen B, Witte DR, Andersen I, Lauritzen T, Andersen GS. Abdominal fat distribution and cardiovascular risk in men and women with different levels of glucose tolerance. J Clin Endocrinol Metab. 2015;100(9):3340–7 (JC20144479). ((Epub ahead of print) PubMed PMID: 26120787).Google Scholar
  55. 55.
    Mostoufi-Moab S, Magland J, Isaacoff EJ, Sun W, Rajapakse CS, Zemel B, Wehrli F, Shekdar K, Baker J, Long J, Leonard MB. Adverse fat depots and marrow adiposity are associated with skeletal deficits and insulin resistance in long-term survivors of pediatric hematopoietic stem cell transplantation. J Bone Miner Res. 2015. doi:10.1002/jbmr.2512. ((Epub ahead of print) PubMed PMID: 25801428).Google Scholar
  56. 56.
    Reyes-Vidal CM, Mojahed H, Shen W, Jin Z, Arias-Mendoza F, Fernandez JC, Gallagher D, Bruce JN, Post KD, Freda PU. Adipose tissue redistribution and ectopic lipid deposition in active acromegaly and effects of surgical treatment. J Clin Endocrinol Metab. 2015;100(8):2946–55 (jc20151917). ((Epub ahead of print) PubMed PMID: 26037515).Google Scholar
  57. 57.
    Karastergiou K, Smith SR, Greenberg AS, Fried SK, Sex differences in human adipose tissues—the biology of pear shape. Biol Sex Differ. 2012;3(1):13. doi:10.1186/2042-6410-3-13. (PubMed PMID: 22651247; PMCID: PMC3411490).Google Scholar
  58. 58.
    Lake JE, Wohl D, Scherzer R, Grunfeld C, Tien PC, Sidney S, Currier JS. Regional fat deposition and cardiovascular risk in HIV infection: the FRAM study. AIDS Care. 2011;23(8):929–38. doi:10.1080/09540121.2010.543885. (Epub 2011 Jun 24. PubMed PMID: 21767228; PubMed Central PMCID: PMC3249238).CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gujral UP, Narayan KM, Pradeepa RG, Deepa M, Ali MK, Anjana RM, Kandula NR, Mohan V, Kanaya AM. Comparing type 2 diabetes, prediabetes and their associated risk factors in Asian Indians in India and in the US: the CARRS and MASALA studies. Diabetes Care. 2015;38(7):1312–8. doi:10.2337/dc15-0032. (Epub 2015 Apr 15. PubMed PMID: 25877810; PubMed Central PMCID: PMC4477335).CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Baldwin C. The effectiveness of nutritional interventions in malnutrition and cachexia. Proc Nutr Soc. 2015;19:1–8. ((Epub ahead of print) PubMed PMID: 26087760).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dympna Gallagher
    • 1
    • 2
    Email author
  • Claire Alexander
    • 3
  • Adam Paley
    • 4
  1. 1.Department of Medicine and Institute of Human NutritionColumbia UniversityNew YorkUSA
  2. 2.Body Composition UnitNew York Obesity Research Center, Columbia University Medical CenterNew YorkUSA
  3. 3.Department of PsychologyGettysburg CollegeGettysburgUSA
  4. 4.James Clack School of EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations