Advertisement

Lifestyle Therapy in the Management of Cardiometabolic Risk: Diabetes Prevention, Hypertension, and Dyslipidemia

  • W. Timothy GarveyEmail author
  • Gillian Arathuzik
  • Gary D. Miller
  • Jamy Ard
Chapter

Abstract

Insulin resistance is a trait that is expressed early in life and progresses to clinically identifiable states of high cardiometabolic risk, namely prediabetes and metabolic syndrome, and culminates in type 2 diabetes (T2D), cardiovascular disease (CVD) events, or both in individual patients. Lifestyle therapy is highly effective in achieving therapeutic goals to manage cardiometabolic risk, which includes preventing T2D, reducing CVD risk, treating hypertension and dyslipidemia, and improving functionality and quality of life. Lifestyle therapy and weight loss are highly effective in achieving these goals in individuals who are overweight or obese. Patient-focused approaches to lifestyle therapy are described that incorporate evidence-based practices involving diet, physical activity, behavioral interventions, and multidisciplinary care, with demonstrated effectiveness for weight loss. Nutritional therapy for the active phase of weight loss (~first year) is accomplished using any one of several healthy meal plans in a reduced calorie format, selected on the basis of personal and cultural preference. During the chronic phase of weight loss maintenance (years–decades) when patients are in energy balance, the rational choice is to emphasize nutrients shown to enhance insulin sensitivity (monounsaturated fatty acids, fiber, and whole grains; represented in Mediterranean diets) and to minimize or avoid foods that promote insulin resistance (saturated fat, trans-fat, and refined grains; represented in the typical ‘Western diet’). In patients who are overweight or obese and have cardiometabolic risks, lifestyle therapy remains the cornerstone of treatment to optimize outcomes, including those patients treated with weight loss medications or bariatric surgery.

Keywords

Cardiometabolic risk Insulin resistance Diabetes prevention Hypertension Dyslipidemia Healthy meal plan Exercise Weight loss Obesity 

Abbreviations

AACE

American Association of Clinical Endocrinologists

ACSM

American College of Sports Medicine

ADA

American Diabetes Association

AHA

American Heart Association

BP

Blood pressure

BMI

Body Mass Index

CBC

Complete blood count

CMDS

Cardiometabolic Disease Staging

CPA

Certified public accountant

CVD

Cardiovascular disease

DASH

Dietary Approaches to Stop Hypertension diet

DGA

Dietary Guidelines for Americans

ECG

Electrocardiogram

ER

Extended release

HCP

Health-care professionals

HDL-C

High-density lipoprotein cholesterol

IFG

Impaired fasting glucose

IGT

Impaired glucose tolerance

IDF

International Diabetes Federation

LDL

Low-density lipoprotein

LDL-C

Low-density lipoprotein cholesterol

MetS

Metabolic syndrome

PUFAs

Polyunsaturated fatty acids

RD

Registered dietitian

VLCD

Very low-calorie diets

VLDL

Very low-density lipoprotein particles

WHO

World Health Organization

Notes

Acknowledgments

We acknowledge the support of the Diabetes Research Center at the University of Alabama at Birmingham funded by an award from the National Institutes of Health (DK-079626).

References

  1. 1.
    Guo F, Moellering DR, Garvey WT. The progression of cardiometabolic disease: validation of a new cardiometabolic disease staging system applicable to obesity. Obesity. 2014;22:110–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75:473–86.PubMedGoogle Scholar
  3. 3.
    Liao Y, Kwon S, Shaughnessy S, Wallace P, Hutto A, Jenkins AJ, Klein RL, Garvey WT. Critical evaluation of adult treatment panel III criteria in identifying insulin resistance with dyslipidemia. Diabetes Care. 2004;27:978–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Reaven GM. Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am. 2011;95:875–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM, San Antonio Heart Study. The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care. 2003;26:3153–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20:537–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamman RF, Wing RR, Edelstein SL, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29:2102–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Laaksonen DE, Lindstrom J, Lakka TA, et al. Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005;54:158–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Garvey WT, Ryan DH, Henry R, Bohannon NJ, Toplak H, Schwiers M, et al. Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care. 2014;37:912–21.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27:155–61. Erratum in Diabetes Care. 2004;27:856.PubMedCrossRefGoogle Scholar
  14. 14.
    Nathan DM, Davidson MB, DeFronzo RA, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30:753–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Garber AJ, Handelsman Y, Einhorn D, Bergman DA, Bloomgarden ZT, Fonseca V, Garvey WT, Gavin JR 3rd, Grunberger G, Horton ES, Jellinger PS, Jones KL, Lebovitz H, Levy P, McGuire DK, Moghissi ES, Nesto RW. Diagnosis and management of prediabetes in the continuum of hyperglycemia: when do the risks of diabetes begin? A consensus statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists. Endocr Pract. 2008;14:933–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Garvey WT. New tools for weight loss therapy enable a more robust medical model for obesity treatment: rationale for a complications-centric approach. Endocr Pract. 2013;19:864–74.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Garvey WT, Garber AJ, Mechanick JI, Bray GA, Dagogo-Jack S, Einhorn D, Grunberger G, Handelsman Y, Hennekens CH, Hurley DL, McGill J, Palumbo P, Umpierrez G. On behalf of the AACE Obesity Scientific Committee. American Association of Clinical Endocrinologists and American College of Endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr Pract. 2014;20:977–89.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    American Diabetes Association. Standards of medical care in diabetes—2015. Diabetes Care. 2015;38 Suppl 1:S8–16.CrossRefGoogle Scholar
  19. 19.
    Grundy SM, Brewer Jr HB, Cleeman JI, American Heart A. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Milicevic Z, Raz J, Beattie SD, et al. Natural history of cardiovascular disease in patients with diabetes: role of hyperglycemia. Diabetes Care. 2008;31(2):155–60.CrossRefGoogle Scholar
  21. 21.
    Van Gaal LF, Mentens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev. 2006;27:242–59.PubMedCrossRefGoogle Scholar
  23. 23.
    Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am. 2008;37:841–56.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;1 68:1617–24.Google Scholar
  28. 28.
    Meigs JB, Wilson PW, Fox CS, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006;91:2906–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Ratner R, Goldberg R, Haffner S, et al. Diabetes Prevention Program Research Group. Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care. 2005;28:888–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Carnethon MR, Prineas RJ, Temprosa M, et al. Diabetes Prevention Program Research Group. The association among autonomic nervous system function, incident diabetes, and intervention arm in the Diabetes Prevention Program. Diabetes Care. 2006;29:914–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Guo F, Moellering DR, Garvey WT. Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2-hour glucose values and effects of gender, race, and age. Metab Syndr Relat Disord. 2014;12:258–68.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    DECODE Study Group. Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care. 2003;26(1):61–9.CrossRefGoogle Scholar
  34. 34.
    Deedwania PC, Volkova N. Current treatment options for the metabolic syndrome. Curr Treat Options Cardiovasc Med. 2005;7:61–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677–86.Google Scholar
  37. 37.
    Lindström J, Ilanne-Parikka P, Peltonen M, et al. Finnish Diabetes Prevention Study Group. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet. 2006;368:1673–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Li G, Zhang P, Wang J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2:474–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Barte JC, ter Bogt NC, Bogers RP, et al. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes Rev. 2010;11:899–906.PubMedCrossRefGoogle Scholar
  40. 40.
    Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95:297–308.PubMedCrossRefGoogle Scholar
  41. 41.
    Wentworth JM, Hensman T, Playfair J, et al. Laparoscopic adjustable gastric banding and progression from impaired fasting glucose to diabetes. Diabetologia. 2014;57:463–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Sjöholm K, Anveden A, Peltonen M, et al. Evaluation of current eligibility criteria for bariatric surgery: diabetes prevention and risk factor changes in the Swedish obese subjects (SOS) study. Diabetes Care. 2013;36:1335–40.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Carlsson LM, Peltonen M, Ahlin S, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367:695–704.PubMedCrossRefGoogle Scholar
  44. 44.
    Magliano DJ, Barr EL, Zimmet PZ, et al. Glucose indices, health behaviors, and incidence of diabetes in Australia: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care. 2008;31:267–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. J Amer Med Assoc. 2012;307:56–65.CrossRefGoogle Scholar
  46. 46.
    Booth H, Khan O, Prevost T, et al. Incidence of type 2 diabetes after bariatric surgery: population-based matched cohort study. Lancet Diabetes Endocrinol. 2014;2:963–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Institute of Medicine (U.S.). Committee on the Consequences of Sodium Reduction in Populations, et al. Sodium intake in populations: assessment of evidence. xiv. Washington, DC: National Academies Press; 2013. 209 p.Google Scholar
  48. 48.
    Institute of Medicine (U.S.). Committee on Strategies to Reduce Sodium Intake, et al. Strategies to reduce sodium intake in the United States. xii. Washington, DC: National Academies Press; 2010. 493 p.Google Scholar
  49. 49.
    Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans. U.D.o.H.a.H.S. U.S. Department of Agriculture, Editors. Washington, DC: U.S. Department of Agriculture, US Department of Health and Human Services; 2010.Google Scholar
  50. 50.
    Mozaffarian D, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.PubMedCrossRefGoogle Scholar
  51. 51.
    Svetkey LP, et al. The DASH diet, sodium intake and blood pressure trial (DASH-sodium): rationale and design. DASH-Sodium Collaborative Research Group. J Am Diet Assoc. 1999;99(8 Suppl):S96–104.PubMedCrossRefGoogle Scholar
  52. 52.
    Vollmer WM, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135(12):1019–28.PubMedCrossRefGoogle Scholar
  53. 53.
    Sacks FM, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Eckel RH, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S76–99.PubMedCrossRefGoogle Scholar
  55. 55.
    Svetkey LP, et al. Effects of dietary patterns on blood pressure: subgroup analysis of the dietary approaches to stop hypertension (DASH) randomized clinical trial. Arch Intern Med. 1999;159(3):285–93.PubMedCrossRefGoogle Scholar
  56. 56.
    Elder CR, et al. Impact of sleep, screen time, depression and stress on weight change in the intensive weight loss phase of the LIFE study. Int J Obes. 2012;36(1):86–92.CrossRefGoogle Scholar
  57. 57.
    Appel LJ, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289(16):2083–93.PubMedGoogle Scholar
  58. 58.
    Hoy MK, Goldman JD. Potassium intake of the US population: what we eat in America, NHANES 2009–1010. Food Surveys Research Group Dietary Data Brief No. 10; 2012. 10.Google Scholar
  59. 59.
    Cappuccio FP, MacGregor GA. Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J Hypertens. 1991;9(5):465–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. 2003;17(7):471–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Whelton PK, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277(20):1624–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Aburto NJ, et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.Google Scholar
  63. 63.
    Medicine, I.o., Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. 2005: National Academies Press.Google Scholar
  64. 64.
    Puddey IB, Vandongen R, Beilin LJ. Pressor effect of alcohol. Lancet. 1985;2(8464):1119–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Klatsky AL, et al. Alcohol consumption and blood pressure Kaiser-Permanente multiphasic health examination data. N Engl J Med. 1977;296(21):1194–200.PubMedCrossRefGoogle Scholar
  66. 66.
    Fuchs FD, et al. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension. 2001;37(5):1242–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Puddey IB, et al. A randomized controlled trial of the effect of alcohol consumption on blood pressure. Clin Exp Pharmacol Physiol. 1985;12(3):257–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Chobanian AV, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Siebenhofer A, et al. Long-term effects of weight-reducing diets in hypertensive patients. Cochrane Database Syst Rev. 2011;(9):CD008274.Google Scholar
  70. 70.
    Staessen J, Fagard R, Amery A. The relationship between body weight and blood pressure. J Hum Hypertens. 1988;2(4):207–17.PubMedGoogle Scholar
  71. 71.
    Bushman B. Promoting exercise as medicine for prediabetes and prehypertension. Curr Sports Med Rep. 2014;13(4):233–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Medicine, A.C.o.S., ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. 2014, Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  73. 73.
    Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kokkinos P. Cardiorespiratory fitness, exercise, and blood pressure. Hypertension. 2014;64(6):1160–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Barlow CE, et al. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am J Epidemiol. 2006;163(2):142–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Huai P, et al. Physical activity and risk of hypertension: a meta-analysis of prospective cohort studies. Hypertension. 2013;62(6):1021–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Staffileno BA, et al. Blood pressure responses to lifestyle physical activity among young, hypertension-prone African-American women. J Cardiovasc Nurs. 2007;22(2):107–17.PubMedCrossRefGoogle Scholar
  78. 78.
    Cornelissen VA, Buys R, Smart NA. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens. 2013;31(4):639–48.PubMedCrossRefGoogle Scholar
  79. 79.
    Cornelissen VA, et al. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58(5):950–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Hanson S, Jones A. Is there evidence that walking groups have health benefits? A systematic review and meta-analysis. Br J Sports Med, 2015.Google Scholar
  81. 81.
    Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Pugh K, Jenkins AJ, Klein RL, Liao Y. The effects of insulin resistance and type 2 diabetes mellitus on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52:453–62.PubMedCrossRefGoogle Scholar
  82. 82.
    Zambon A, Hokanson JE, Brown BG, Brunzell JD. Evidence for a new pathophysiological mechanism for coronary artery regression: hepatic lipase-mediated changes in LDL density. Circulation. 1999;99:1959–64.PubMedCrossRefGoogle Scholar
  83. 83.
    St-Pierre AC, Cantin B, Dagenais GR, Mauriege P, Bernard PM, Despres JP, Lamarche B. Low density lipoprotein subfractions and the long term risk of ischemic heart disease in men: 13-year follow up data from the Quebec Cardiovascular Study. Arterioscler Thronmb Vasc Biol. 2005;25:553–9.CrossRefGoogle Scholar
  84. 84.
    Ip S, Lichtenstein AH, Chung M, Lau J, Balk EM. Systematic review: Association of low-density lipoprotein subfractions with cardiovascular outcomes. Ann Intern Med. 2009;150:474–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff JDC, O’Leary DH, Saad MF, Tsai MY, Sharrett AR. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2007;192:211–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, Shepherd MD, Seibel JA. AACE Task Force for Management of Dyslipidemia and Prevention of Atherosclerosis. American Association of Clinical Endocrinologists’ Guidelines for Management of Dyslipidemia and Prevention of Atherosclerosis. Endocr Pract. 2012;18 Suppl 1:1–78.PubMedCrossRefGoogle Scholar
  87. 87.
    Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, Davidson MB, Einhorn D, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpierrez G, Davidson MH. Aace/ace comprehensive diabetes management algorithm 2015. Endocr Pract. 2015;21(4):438–47.PubMedCrossRefGoogle Scholar
  88. 88.
    Jacobson TA, Ito MK, Maki KC, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1-executive summary. J Clin Lipidol. 2014;8(5):473–88.PubMedCrossRefGoogle Scholar
  89. 89.
    Ewald N, Hardt PD, Kloer HU. Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipidol. 2009; 20:497–504.PubMedCrossRefGoogle Scholar
  90. 90.
    National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002. 17; 106(25):3143–3421.Google Scholar
  91. 91.
    Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, Sacks F, Steffen LM, Wylie-Rosett J, American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2009;120(11):1011–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, Conlin PR, Erlinger TP, Rosner BA, Laranjo NM, Charleston J, McCarron P, Bishop LM, OmniHeart Collaborative Research Group. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005;294(19):2455–64.PubMedCrossRefGoogle Scholar
  93. 93.
    de Souza RJ, Swain JF, Appel LJ, Sacks FM. Alternatives for macronutrient intake and chronic disease: a comparison of the OmniHeart diets with popular diets and with dietary recommendations. Am J Clin Nutr. 2008;88(1):1–11.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Miller M, Stone NJ, Ballantyne C, et al., American Heart Association Clinical Lipidology, Thrombosis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.Google Scholar
  95. 95.
    Bays HE, Toth PP, Kris-Etherton PM, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7:304–83.PubMedCrossRefGoogle Scholar
  96. 96.
    Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.PubMedGoogle Scholar
  97. 97.
    Itsiopoulos C, Brazionis L, Kaimakamis M, et al. Can the Mediterranean diet lower HbA1c in type 2 diabetes? Results from a randomized cross-over study. Nutr Metab Cardiovasc Dis. 2011;21:740–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Estruch R, Ros E, Salas-Savado J, et al. PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Elhayany A, Lustman A, Abel R, Attal-Singer J, Vinker S. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study. Diabetes Obes Metab. 2010;12:204–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Shai I, Schwarzfuchs D, Henkin Y, et al., Dietary Intervention Randomized Controlled Trial (DIRECT) Group. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2009;359:229–41.Google Scholar
  101. 101.
    Kjems L, Filozof C, Wright M, Keefe D. Association between fasting triglycerides and presence of fasting chylomicrons in patients with severe hypertriglyceridemia. J Clin Lipidol. 2014;8:312. (Abstract 121).CrossRefGoogle Scholar
  102. 102.
    Viljoen A, Wierzbicki AS. Diagnosis and treatment of severe hypertriglyceridemia. Expert Rev Cardiovasc Ther. 2012;10:505–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr, Brehm BJ, Bucher HC. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. JAMA Intern Med. 2006;166(3):285–93. Erratum in: JAMA Intern Med. 2006;166(8):932.CrossRefGoogle Scholar
  104. 104.
    Morgan LM, Griffin BA, Millward DJ, DeLooy A, Fox KR, Baic S, Bonham MP, Wallace JM, MacDonald I, Taylor MA, Truby H. Comparison of the effects of four commercially available weight-loss programmes on lipid-based cardiovascular risk factors. Public Health Nutr. 2009;12(6):799–807.PubMedCrossRefGoogle Scholar
  105. 105.
    Varady KA, Bhutani S, Klempel MC, Lamarche B. Improvements in LDL particle size and distribution by short-term alternate day modified fasting in obese adults. Br J Nutr. 2011;105(4):580–3.PubMedCrossRefGoogle Scholar
  106. 106.
    Varady KA, Bhutani S, Klempel MC, Kroeger CM. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10:119.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr. 2006;83(5):1025–31.PubMedGoogle Scholar
  108. 108.
    Wood RJ, Volek JS, Liu Y, Shachter NS, Contois JH, Fernandez ML. Carbohydrate restriction alters lipoprotein metabolism by modifying VLDL, LDL, and HDL subfraction distribution and size in overweight men. J Nutr. 2006;136(2):384–9.PubMedGoogle Scholar
  109. 109.
    Richard C, Couture P, Ooi EM, Tremblay AJ, Desroches S, Charest A, Lichtenstein AH, Lamarche B. Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome. Arterioscler Thromb Vasc Biol. 2014;34(2):433–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Graham TE. Exercise, postprandial triacylglyceridemia, and cardiovascular disease risk. Can J Appl Physiol. 2004;29:781–99.PubMedCrossRefGoogle Scholar
  111. 111.
    Dekker MJ, Graham TE, Ooi TC, Robinson LE. Exercise prior to fat ingestion lowers fasting and postprandial VLDL and decreases adipose tissue IL-6 and GIP receptor mRNA in hypertriacylglycerolemic men. J Nutr Biochem. 2010;21(10):983–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS. Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology. 2009;60(5):614–32.PubMedCrossRefGoogle Scholar
  113. 113.
    Pitsavos C, Panagiotakos DB, Tambalis KD, Chrysohoou C, Sidossis LS, Skoumas J, Stefanadis C. Resistance exercise plus to aerobic activities is associated with better lipids’ profile among healthy individuals: the ATTICA study. Q J Med. 2009;102(9):609–16.CrossRefGoogle Scholar
  114. 114.
    http://www.health.gov/dietaryguidelines/2015-scientific-report/PDFs/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf/dietaryguidelines/2015-scientific-report/PDFs/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf.
  115. 115.
    Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.PubMedCrossRefGoogle Scholar
  116. 116.
    Lara-Castro C, Garvey WT. Diet, insulin resistance, and obesity: zoning in on data for Atkins dieters living in South Beach. J Clin Endocrinol Metab. 2004;89:4197–205.PubMedCrossRefGoogle Scholar
  117. 117.
    Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. J Amer Med Assoc. 2005;293(1):43–53.CrossRefGoogle Scholar
  118. 118.
    Stern L, Iqbal N, Seshadri P, et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med. 2004;140:778–85.PubMedCrossRefGoogle Scholar
  119. 119.
    Weinsier RL, Wilson NP, Morgan SL, Cornwell AR, Craig CB. EatRight lose weight: seven simple steps. Birmingham: Oxmoor House; 1997.Google Scholar
  120. 120.
    Greene LF, Malpede CZ, Henson CS, Hubbert KA, Heimburger DC, Ard JD. Weight maintenance 2 years after participation in a weight loss program promoting low-energy density foods. Obesity. 2006;10:1795–801.CrossRefGoogle Scholar
  121. 121.
    Ard JD, Cox TL, Zunker C, Wingo BC, Jefferson WK, Brakhage C. A study of a culturally enhanced EatRight dietary intervention in a predominately African American workplace. J Public Health Manag Pract. 2010;16(6):E1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Turner-McGrievy GM, Barnard ND, Cohen J, Jenkins DJA, Gloede L, Green AA. Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a lowfat vegan diet or a conventional diabetes diet for 22 weeks. J Am Diet Assoc. 2008;108:1636–45.PubMedCrossRefGoogle Scholar
  123. 123.
    Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, Szapary PO, Rader DJ, Edman JS, Klein S. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348:2082–90.PubMedCrossRefGoogle Scholar
  124. 124.
    Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med. 2003;348:2074–81.PubMedCrossRefGoogle Scholar
  125. 125.
    Lovejoy JC, Windhauser MM, Rood JC, de la Bretonne JA. Effect of a controlled high-fat versus low-fat diet on insulin sensitivity and leptin levels in African-American and Caucasian women. Metabolism. 1998;47:1520–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Astrup A, Astrup A, Buemann B, Flint A, Raben A. Low-fat diets and energy balance: how does the evidence stand in 2002? Proc Nutr Soc. 2002;61:299–309.PubMedCrossRefGoogle Scholar
  127. 127.
    Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev. 1992;13:387–414.PubMedGoogle Scholar
  128. 128.
    Ludwig DS. Dietary glycemic index and obesity. J Nutr. 2000;130:280S–3.PubMedGoogle Scholar
  129. 129.
    Roberts SB. High-glycemic index foods, hunger, and obesity: is there a connection? Nutr Rev. 2000;58:163–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Pi-Sunyer FX. Glycemic index and disease. Am J Clin Nutr. 2002;76:290S–8.PubMedGoogle Scholar
  131. 131.
    World Health Organization. Diet, nutrition and the prevention of chronic diseases. 916. Geneva: WHO Technical Report Series; 2003.Google Scholar
  132. 132.
    Pereira MA, Jacobs DR Jr, Pins JJ, Raatz SK, Gross MD, Slavin JL, Seaquist ER. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr. 2002;75:848–55.PubMedGoogle Scholar
  133. 133.
    Hu FB, van Dam RM, Liu S. Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia. 2001;44(7):805–17.PubMedCrossRefGoogle Scholar
  134. 134.
    Heymsfield SB, van Mierlo CA, van der Knaap HC, Heo M, Frier HI. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes Relat Metab Disord. 2003;27:537–49.PubMedCrossRefGoogle Scholar
  135. 135.
    Harris JA, Benedict FG. A biometric study of basal metabolism in man. Washington, DC: Carnegie Institute of Washington; 1919 (publ. no. 279).Google Scholar
  136. 136.
    Mifflin MD, St. Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:251–7.Google Scholar
  137. 137.
    Martin K, Wallace P, Rust PF, Garvey WT. Estimation of resting energy expenditure considering effects of race and diabetes status. Diabetes Care. 2004;27:1405–11.PubMedCrossRefGoogle Scholar
  138. 138.
    Hipskind P, Glass C, Charlton D, Nowak D, Dasarathy S. Do handheld calorimeters have a role in assessment of nutrition needs in hospitalized patients? A systematic review of literature. Nutr Clin Pract. 2011;26(4):426–33.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Wing RR, Lang W, Wadden TA, et al. The Look AHEAD Research Group. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rivellese AA, De Natale C, Lilli S. Type of dietary fat and insulin resistance. Ann N Y Acad Sci. 2002;967:329–35.PubMedCrossRefGoogle Scholar
  141. 141.
    Mayer-Davis EJ, Monaco JH, Hoen HM, Carmichael S, Vitolins MZ, Rewers MJ, Haffner SM, Ayad MF, Bergman RN, Karter AJ. Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). Am J Clin Nutr. 1997;65:79–87.PubMedGoogle Scholar
  142. 142.
    Maron DJ, Fair JM, Haskell WL. Saturated fat intake and insulin resistance in men with coronary artery disease. The Stanford Coronary Risk Intervention Project Investigators and Staff. Circulation. 1991;84:2020–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Marshall JA, Bessesen DH, Hamman RF. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia. 1997;40:430–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. Dietary fat intake and risk of Type 2 Diabetes in women. Am J Clin Nutr. 2001;73:1019–26.PubMedGoogle Scholar
  145. 145.
    Summers LK, Fielding BA, Bradshaw HA, Ilic V, Beysen C, Clark ML, Moore NR, Frayn KN. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia. 2002;45:369–77.PubMedCrossRefGoogle Scholar
  146. 146.
    Mayer EJ, Newman B, Quesenberry CP Jr, Selby JV. Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care. 1993;16:1459–69.PubMedCrossRefGoogle Scholar
  147. 147.
    Simopoulos AP. Omega-3 fatty acids in the prevention-management of cardiovascular disease. Can J Physiol Pharmacol. 1997;75:234–9.PubMedGoogle Scholar
  148. 148.
    Vessby B, Aro A, Skarfors E, Berglund L, Salminen I, Lithell H. The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes. 1994;43:1353–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr. 1998;67:577S–82.PubMedGoogle Scholar
  150. 150.
    Perez-Jimenez F, Lopez-Miranda J, Pinillos MD, Gomez P, Paz-Rojas E, Montilla P, Marin C, Velasco MJ, Blanco-Molina A, Jimenez Pereperez JA, Ordovas JM. A Mediterranean and a high-carbohydrate diet improve glucose metabolism in healthy young persons. Diabetologia. 2001;44:2038–43.PubMedCrossRefGoogle Scholar
  151. 151.
    Thomsen C, Rasmussen O, Christiansen C, Pedersen E, Vesterlund M, Storm H, Ingerslev J, Hermansen K. Comparison of the effects of a monounsaturated fat diet and a high carbohydrate diet on cardiovascular risk factors in first degree relatives to Type-2 diabetic subjects. Eur J Clin Nutr. 1999;53:818–23.PubMedCrossRefGoogle Scholar
  152. 152.
    Kiens B, Richter EA. Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am J Clin Nutr. 1996;63:47–53.PubMedGoogle Scholar
  153. 153.
    Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RB Jr, Mayer-Davis EJ. Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr. 2003;78:965–71.PubMedGoogle Scholar
  154. 154.
    McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004;27:538–46.PubMedCrossRefGoogle Scholar
  155. 155.
    Pereira MA, Jacobs DR Jr, Pins JJ, Raatz SK, Gross MD, Slavin JL, Seaquist ER. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr. 2002;75:848–55.PubMedGoogle Scholar
  156. 156.
    Shai I, Schwarzfuchs D, Henkin Y, et al. Dietary Intervention Randomized Controlled Trial (DIRECT) Group. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2009;359:229–41.CrossRefGoogle Scholar
  157. 157.
    de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85.PubMedCrossRefGoogle Scholar
  158. 158.
    Martinez-Gonzalez MA, Bes-Rastrollo M. Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr Opin Lipidol. 2014;25(1):20–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Hoevenaar-Blom MP, Nooyens AC, Kromhout D, Spijkerman AM, Beulens JW, van der Schouw YT, Bueno-de-Mesquita B, Verschuren WM. Mediterranean style diet and 12-year incidence of cardiovascular diseases: the EPIC-NL cohort study. PLoS ONE. 2012;7(9):e45458.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57:1299–313.PubMedCrossRefGoogle Scholar
  161. 161.
    Esposito K, Maiorino MI, Ceriello A, Giugliano D. Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract. 2010;89:97–102.PubMedCrossRefGoogle Scholar
  162. 162.
    Salas-Salvadó J, Bulló M, Babio N, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Martínez-González MA, de la Fuente-Arrillaga C, Nuñez-Córdoba JM, et al. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. Brit Med J. 2008;336:1348–51.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Salas-Salvadó J, Fernández-Ballart J, Ros E, et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008;168:2449–58.PubMedCrossRefGoogle Scholar
  165. 165.
    Jeon CY, Lokken RP, Hu FB, van Dam RM. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007;30(3):744–52.PubMedCrossRefGoogle Scholar
  166. 166.
    Duncan GE, Perri MG, Theriaque DW, Hutson AD, Eckel RH, Stacpoole PW. Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care. 2003;26(3):557–62.PubMedCrossRefGoogle Scholar
  167. 167.
    Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Bajpeyi S, Tanner CJ, Slentz CA, et al. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J Appl Physiol. 2009;106(4):1079–85.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Myers VH, McVay MA, Brashear MM, Johannsen NM, Swift DL, Kramer K, Harris MN, Johnson WD, Earnest CP, Church TS. Exercise training and quality of life in individuals with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2013;36(7):1884–90.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Johannsen NM, Swift DL, Lavie CJ, Earnest CP, Blair SN, Church TS. Categorical analysis of the impact of aerobic and resistance exercise training, alone and in combination, on cardiorespiratory fitness levels in patients with type 2 diabetes: results from the HART-D study. Diabetes Care. 2013;36(10):3305–12.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006;29(11):2518–27.PubMedCrossRefGoogle Scholar
  172. 172.
    Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357–69.PubMedCrossRefGoogle Scholar
  173. 173.
    American College of Sports Medicine and the American Diabetes Association. Joint position statement: exercise and type 2 diabetes. Med Sci Sports Exerc. 2010;42:2282–303.CrossRefGoogle Scholar
  174. 174.
    Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005.PubMedCrossRefGoogle Scholar
  175. 175.
    Helmrich SP, Ragland DR, Leung RW, Paffenbarger RS Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med. 1991;325(3):147–52.PubMedCrossRefGoogle Scholar
  176. 176.
    Hu FB, Sigal RJ, Rich-Edwards JW, et al. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA. 1999;282(15):1433–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Manson JE, Rimm EB, Stampfer MJ, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet. 1991;338(8770):774–8.PubMedCrossRefGoogle Scholar
  178. 178.
    Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett EJ. Screening for coronary artery disease in patients with diabetes. Diabetes Care. 2007;30:2729–36.PubMedCrossRefGoogle Scholar
  179. 179.
    Maclean PS, Bergouignan A, Cornier MA, Jackman MR. Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol. 2011;301:R581–R600.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Ebbeling CB, Swain JF, Feldman HA, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307:2627–34.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365:1597–604.PubMedCrossRefGoogle Scholar
  183. 183.
    Sumithran P, Proietto J. The defence of body weight: a physiological basis for weight regain after weight loss. Clin Sci. 2013;124:231–41.PubMedCrossRefGoogle Scholar
  184. 184.
    Doucet E, Imbeault P, St-Pierre S, et al. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int J Obes Relat Metab Disord. 2000;24:906–14.PubMedCrossRefGoogle Scholar
  185. 185.
    Ochner CN, Barrios DM, Lee CD, Pi-Sunyer FX. Biological mechanisms that promote weight regain following weight loss in obese humans. Physiol Behav. 2013;120:106–13.PubMedCrossRefGoogle Scholar
  186. 186.
    Fidler MC, Sanchez M, Raether B, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011;96:3067–77.PubMedCrossRefGoogle Scholar
  187. 187.
    Wadden TA, Foreyt JP, Foster GD, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity. 2011;19:110–20.PubMedCrossRefGoogle Scholar
  188. 188.
    Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes. 2013;37:1514.CrossRefGoogle Scholar
  189. 189.
    Wadden TA, Berkowitz RI, Sarwer DB, Prus-Wisniewski R, Steinberg C. Benefits of lifestyle modification in the pharmacologic treatment of obesity: a randomized trial. Arch Intern Med. 2001;161(2):218–27.PubMedCrossRefGoogle Scholar
  190. 190.
    Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient-2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19:337–72.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • W. Timothy Garvey
    • 1
    Email author
  • Gillian Arathuzik
    • 2
    • 3
  • Gary D. Miller
    • 4
  • Jamy Ard
    • 5
    • 6
  1. 1.Department of Nutrition Sciences, University of Alabama at Birmingham, GRECC, Birmingham VA Medical CenterUAB Diabetes Research CenterBirminghamUSA
  2. 2.Lahey Outpatient CenterDanversUSA
  3. 3.Addison Gilbert HospitalGloucesterUSA
  4. 4.Department of Health and Exercise ScienceWake Forest UniversityWinston-SalemUSA
  5. 5.Department of Epidemiology and PreventionWake Forest UniversityWinston-SalemUSA
  6. 6.Weight Management CenterWinston-SalemUSA

Personalised recommendations