Transcultural Applications to Lifestyle Medicine

  • Osama Hamdy
  • Jeffrey I. MechanickEmail author


The prevalence of chronic disease is not a generic American health-care problem. Rather, chronic disease expression varies among different cultures outside the USA as well as within the USA among a diverse population of multicultural Americans. Health-care professionals must act without bias in a sensitive and appropriate manner when caring for patients from different cultures. The principles of lifestyle medicine must therefore be adapted to optimize implementation and success. Variables in transcultural adaptation range from biological to environmental factors. These include genetic and epigenetic interactions, nutrition (eating patterns, food policy, food politics, and food sourcing), physical activity, socio-economic, religious and spiritual, and other attitudes and behaviors. There is a great need to incorporate transcultural adaptation to clinical practice, medical education, and scientific research to advance this necessary component of effective lifestyle medicine. Case studies are provided for the Latino and Asian Indian cultures in the USA.


Transcultural Lifestyle Nutrition Healthy eating Physical activity 



Glycated hemoglobin


Body mass index


Cardiovascular disease


Dietary Approaches to Stop Hypertension


Endocrine disrupting compounds


Glycemic index


Health-care professionals


Monounsaturated fatty acids

n-3 PUFA

Omega-3 polyunsaturated fatty acids


Physical activity


type-2 diabetes


Transcultural Diabetes Nutrition Algorithm


Waist circumference


Waist-to-hip ratio


  1. 1.
    Mowafi M, Khawaja M. Poverty. J Epidemiol Community Health. 2005;59:260–4.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mechanick JI, Marchetti AE, Apovian C, et al. Diabetes-specific nutrition algorithm: a transcultural program to optimize diabetes and prediabetes care. Curr Diab Rep. 2012;12:180–94.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Su HY, Tsang MW, Huang SY, et al. Transculturalization of a diabetes-specific nutrition algorithm: Asian application. Curr Diab Rep. 2012;12:213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Joshi SR, Mohan V, Joshi SS, et al. Transcultural diabetes nutrition therapy algorithm: the Asian Indian application. Curr Diab Rep. 2012;12:204–12.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hussein Z, Hamdy O, Chia YC, et al. Transcultural diabetes nutrition algorithm: a Malaysian application. Int J Endocrinol. 2013. Scholar
  6. 6.
    Gougeon R, Sievenpiper JL, Jenkins D, et al. The transcultural diabetes nutrition algorithm: a Canadian perspective. Int J Endocrinol. 2014. Scholar
  7. 7.
    Nieto-Martinez R, Hamdy O, Marante D, et al. Transcultural diabetes nutrition algorithm (tDNA): Venezuelan application. Nutrients. 2014;6:1333–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bolio Galvis A, Hamdy O, Escalante Pulido M, et al. Transcultural diabetes nutrition algorithm: the Mexican application. J Diabetes Metab. 2014;5:1–10. Scholar
  9. 9.
    Hamdy O, Marchetti A, Hegazi RA, et al. The transcultural diabetes nutrition algorithm toolkit: survey and content validation in the United States, Mexico, and Taiwan. Diab Technol Therapeut 2014;16. doi:10.1089/dia.2013.0276.Google Scholar
  10. 10.
    Hegazi RA, DeVitt AA, Mechanick JI. The transcultural diabetes nutrition algorithm: from concept to implementation. In: Watson RR, Dokken BB, editors Glucose intake and utilization in pre-diabetes and diabetes. Boston: Elsevier, pp. 269–280.Google Scholar
  11. 11.
    Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–410.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sanchez-Guerra M, Perez-Herrera N, Quintanilla-Vega B. Organophosphorous pesticides research in Mexico: epidemiological and experimental approaches. Toxicol Mech Meth. 2011;21:681–91.CrossRefGoogle Scholar
  13. 13.
    Schell LM, Burnitz KK, Lathrop PW. Pollution and human biology. Ann Hum Biol. 2010;37:347–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Villarreal-Calderon A, Acuna H, Villarreal-Calderon J, et al. Assessment of physical education time and after-school outdoor time in elementary and middle school students in south Mexico City: the dilemma between physical fitness and the adverse health effects of outdoor pollutant exposure. Arch Environ Health. 2002;57:450–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011;73:135–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Xu X, Tan L, Himi T, et al. Changed preference for sweet taste in adulthood induced by perinatal exposure to bisphenol A—a probable link to overweight and obesity. Neurotoxicol Teratol. 2011;33:458–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Lange FT, Scheurer M, Brauch HJ. Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review. Anal Bioanal Chem. 2012;403:2503–18.CrossRefPubMedGoogle Scholar
  18. 18.
    Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev. 2012;13:799–809.CrossRefPubMedGoogle Scholar
  19. 19.
    Plaisance V, Waeber G, Regazzi R, et al. J Diabetes Res; 2014.
  20. 20.
    Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev. 2014;10:303–10.Google Scholar
  21. 21.
    Welcome MO, Pereverzev VA. Glycemic allostasis during mental activities on fasting in non-alcohol users and alcohol users with different durations of abstinence. Ann Med Health Sci Res. 2014;4(Suppl 3):S199–S207.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mechanick JI. Metabolic mechanisms of stress hyperglycemia. J Parenter Enteral Nutr. 2006;30:157–63.CrossRefGoogle Scholar
  23. 23.
    Pettomuso M, De Risio L, Di Nicola M, et al. Allostasis as a conceptual framework linking bipolar disorder and addiction. Front Psychiat. 2014;5:1–10.Google Scholar
  24. 24.
    Baffy G, Loscalzo J. Complexity and network dynamics in physiological adaptation: an integrated view. Physiol Behav. 2014;131:49–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Power ML, Schulkin J. Maternal obesity, metabolic disease, and allostatic load. Physiol Behav. 2012;106:22–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhao S, Mechanick JI, Jacques PF. Eating patterns. In: Mechanick JI et al., editors. Molecular nutrition. Washington D.C.: Endocrine Press; 2015. pp. 52–62.Google Scholar
  27. 27.
    Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Spiegelman D, Willett WC. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr. 2000;72(4):912–21.PubMedGoogle Scholar
  28. 28.
    Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Janssen I, Katzmarzyk PT, Boyce WF, et al. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes Rev. 2005;6(2):123–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Mitrou PN, Kipnis V, Thiébaut ACM, et al. Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP diet and health study. Arch Intern Med. 2007;167(22):2461–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Salas-Salvadó J, Fernández-Ballart J, Ros E, et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008;168(22):2449–58.CrossRefPubMedGoogle Scholar
  32. 32.
    Trivedi NJ, Fields J, Mechanick CH, et al. Lack of correlation between antiobesity policy and obesity growth rates: review and analysis. Endocr Pract. 2012;18:737–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Solomon R, Via MA, Piqueras R, et al. Dietetics, the culinary arts, and molecular gastronomy. In: Mechanick JI et al., editors. Molecular nutrition. Washington D.C.: Endocrine Press; 2015. pp. 29–51.Google Scholar
  34. 34.
    Zhao S, Mechanick JI. Targeting Foodome-metabolome interactions: a combined modeling approach. In: Mechanick JI et al., editors. Molecular nutrition. Washington D.C.: Endocrine Press; 2015. pp. 181–204.Google Scholar
  35. 35.
    Fields J, Trivedi NJ, Horton E, et al. Vitamin D in the Persian Gulf: integrative physiology and socioeconomic factors. Curr Osteoporos Rep. 2011;9:243–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Lopez-Jimenez F, Lavie CJ. Hispanics and cardiovascular health and the ‘Hispanic Paradox’: what is known and what needs to be discovered? Prog Cardiovasc Dis. 2014;57:227–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Ganzer CA, Jacobs AR, Iqbal F. Persistent sexual, emotional, and cognitive impairment post-finasteride: a survey of men reporting symptoms. Am J Mens Health. 2014. doi:10.1177/1557988314538445.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Bone DiseaseIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Joslin Diabetes CenterHarvard Medical SchoolBostonUSA

Personalised recommendations