Skip to main content

Role of Abscisic Acid Producing PGPR in Sustainable Agriculture

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

The global climate is predicted to change the environment drastically over the next century. Increase in CO2 and temperature and decrease in soil water content leading to enhance drought in several areas of the world are expected. In the last few years, it has been increased the interest in environmental friendly, sustainable, and organic cultural practices that warrant high yield and quality in agricultural crops. Plant growth-promoting rhizobacteria (PGPR) have an important role in the growth and metabolism of plants. The beneficial effects of PGPRs have been demonstrated for many agricultural crop species. Numerous studies indicated that PGPR allow plants survive to biotic and abiotic stresses. Production of phytohormones is one of the main mechanisms to explain the beneficial effects that modified plant growth and development. In this review we are focusing on drought tolerance through ABA regulation and we showed that PGPR act as important agent for influencing the beneficial response of plants to climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60(4):1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar N, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Arkhipova TN, Veselov SY, Melentiev AI, Martynenko EV, Kudoyarova GR (2006) Comparison of effects of bacterial strains differing in their ability to synthesize cytokinins on growth and cytokinin content in wheat plants. Russ J Plant Physiol 53:507–513

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhances plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arruebarrena Di Palma A, Pereyra CM, Moreno Ramirez L, Xiqui Vázquez ML, Baca BE, Pereyra MA, Lamattina L, Creus CM (2013) Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol Lett 338(1):77–85

    Article  PubMed  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1993) Microbial production of plant growth regulators. In: Blaine F, Metting Jr. (eds) Soil microbial ecology: Marcel and Dekker, Inc., New York, pp 307–347

    Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Attia M, Ahmed MA, El-Sonbaty MR (2009) Use of biotechnologies to increase growth, productivity and fruit quality of Maghrabi Banana under different rates of phosphorous. World J Agric Sci 5(2):211–220

    CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and Indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microb 46(5):324–328

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barazani OZ, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  • Barea J, Navarro M, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40:129–134

    Article  CAS  PubMed  Google Scholar 

  • Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: is it different for Africa? Food Policy 33:287–298

    Article  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Fresh-weigth measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol Biochem 37:1795–1804

    Article  CAS  Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez J-P, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42:279–285

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R (2011) Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 286(4):2504–2516

    Article  CAS  PubMed  Google Scholar 

  • Bastián F, Cohen AC, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Bastián F, Rapparini F, Baraldi R, Piccoli P, Bottini R (1999) Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor (L.) Moench. Symbiosis 27:147–156

    Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under salinated conditions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 561–573

    Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    CAS  Google Scholar 

  • Berli FJ, Fanzone M, Piccoli P, Bottini R (2011) Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem 59:4874–4884

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria review. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2002) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Boddey RM, Dobereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fert Res 42:241–250

    Article  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants: American society of plant physiologists, pp 1158–1203

    Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    Article  CAS  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  CAS  PubMed  Google Scholar 

  • Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, Scarfì S, Millo E, De Flora A, Zocchi E (2007) Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci U. S. A. 104(14):5759–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassán F, Bottini R, Schneider G, Piccoli P (2001a) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassán F, Lucangeli C, Bottini R, Piccoli P (2001b) Azospirillum spp. metabolize [17,17-2H2]Gibberellin A20 to [17,17-2H2]Gibberellin A1 in vivo in dry rice mutant seedlings. Plant Cell Physiol 42:763–767

    Article  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41

    Article  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Pontin M, Bottini R, Piccoli P (2007) Azospirillum brasilense and ABA improve growth in Arabidopsis thaliana. In: 19th international plant growth substances association meeting, Puerto Vallarta, México

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia C, Bottini R, Piccoli P (2009) Participation of abscisic acid and gibberellins produced by entophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21(1):1–18

    Article  PubMed  Google Scholar 

  • Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244

    Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Arruda P, Jasmim JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2001) Biosynthesis of hormones and elicitors molecules. In: Buchanan BB, Grussem W, Jones RL (eds) Biochemistry and molecular biology of plants, pp 850–900

    Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and break-down of ABA. Trends Plant Sci 4:472–478

    Article  CAS  PubMed  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Rodriguez Carvajal MA, Soria Diaz ME, Gil Serrano A, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobiumon on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Davies P (1995) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer Acad Press, Dordrecht, p 833

    Google Scholar 

  • Davies P (2005) The plant hormones; their nature occurrence and function. In: Davies P (ed) Plant hormones. biosynthesis, signal transduction, action. Kluwer Academic Press, Dordrecht, pp 1–15

    Google Scholar 

  • Deka BHP, Dileep KBS (2002) Plant disease suppression and growth promotion by a fluorescent Pseudomonas strain. Folia Microbiol 47:137–143

    Article  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soil 24:358–364

    Article  Google Scholar 

  • De Smet I, Zhang H, Inze D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  CAS  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th international crop science congress

    Google Scholar 

  • Dodd IC, Theobald JC, Bacon MA, Davies WJ (2006) Alternation of wet and dry sides during partial root zone drying irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 33(12):1081–1089

    Article  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov A (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Domínguez JE, García Lampasona S, Cohen AC, Salomon MV (2011) Piccoli. Estudio del gen CrtZ, intermediario clave en la vía del Ácido Abscísico en Pseudomonas fluorescens, aisladas de raíces de plantas de vid. Tucumán, Argentina: XVII Congr SAMIGE

    Google Scholar 

  • Egamberdieva D (2008) Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32(1):9–15

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.) isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34:1305–1309

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria (review). Euro J Plant Pathol 119(3):329–339

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotech Adv 28:367–374

    Article  CAS  Google Scholar 

  • Golpayegani A, Tilebeni HG (2011) Effect of biological fertilizers on biochemical and physiological parameters of Basil (Ociumum basilicm L.) medicine plant. Am-Eur J Agric Environ Sci 11(3):411–416

    CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can J Microbiol 29:916–923

    Article  CAS  Google Scholar 

  • Hasegawa S, Poling SM, Maier VP, Bennett RD (1984) Metabolism of abscisic acid: bacterial conversion to dehydrovomifoliol and vomifoliol dehydrogenase activity. Phytochemistry 23:2769–2771

    Article  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. I. enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47

    Article  Google Scholar 

  • Hasegawa S, Meguro A, Toyoda K, Nishimura T, Kunoh H (2005) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. II. Acceleration of callose accumulation and lignification. Actinomycetologica 19:13–17

    Article  CAS  Google Scholar 

  • Hedden P, Phillips A (2000) Gibberellin metabolism: new insights revealed genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331

    Article  CAS  PubMed  Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6(5):6–11

    Google Scholar 

  • Hu J, Lin X, Wang J, Chu H, Yin R, Zhang J (2009) Population size and specific potential of P-mineralizing and P-solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia 53:49–58

    Article  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B 60:7–11

    Article  CAS  Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Kang S-M, Khana AL, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Article  CAS  Google Scholar 

  • Kang S-M, Khan AL, Hamayun M, Shinwari ZK, Kim Y-H, Joo G-J, Lee I-J (2012) Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemical. Pak J Bot 44(1):365–372

    CAS  Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33(2):173–179

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Proc. 4:879–882

    Google Scholar 

  • Kloepper J, Lifshitz R, Schroth M (1989) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci 8:6064

    Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kolb W, Martin P (1985) Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 215–221

    Chapter  Google Scholar 

  • Lamattina L, Polacco J (2007) Nitric oxide in plant growth development and stress physiology. Springer, Berlin, p 283

    Book  Google Scholar 

  • Leveau JHJ, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole-3-acetic acid. FEMS Microbiol Ecol 65:238–250

    Article  CAS  PubMed  Google Scholar 

  • Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicas. Ann Bot-london 1–9

    Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:54–56

    Article  CAS  Google Scholar 

  • Maheshwari DK (2010) Plant growth and health promoting rhizobacteria. In: Microbiology monograph, Springer, Heidelberg Dordrecht London New York, vol 18, p 453

    Google Scholar 

  • Maheshwari DK (2012) Bacteria in agrobiology: stress management. Springer, Germany 341

    Book  Google Scholar 

  • Marasco EK, Schmidt-Dannert C (2008) Exploring and accessing plant natural product biosynthesis in engineered microbial hosts. Medicinal plant biotechnology: from basic research to industrial applications, pp 287–317

    Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. J Plant Growth Regul 28(2):115–124

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth promoting bacteria confers resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr 24:599–612

    Article  CAS  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    Article  CAS  PubMed  Google Scholar 

  • Moreno D, Berli FJ, Piccoli P, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berries of grape plants. J Plant Growth Regul 30:220–228

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Naseema H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Inter 9(1):689–701

    Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–228

    Article  Google Scholar 

  • Pandey S, Bhandari H, Ding PP, Sharan R, Naik D, Taunk SK, Sastri A (2007) Coping with drought in rice farming in Asia: insights from a cross-country comparative study. Agric Econ 37:213–224

    Article  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) The role of bacterial indole acetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Cortés H, Sánchez-Serrano JJ, Mertenst R, Willmitzer L, Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U.S.A. 86:9851–9855

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrig D, Boiero L, Masciarelli O, Penna C, Cassa´n F, Luna V (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Piccoli P, Bottini R (1994a) Metabolism of 17,17-(2H2)gibberellin A20 to 17,17-(2H2)gibberellin A1 by Azospirillum lipoferum cultures. Agri-Scientia 11:13–15

    Google Scholar 

  • Piccoli P, Bottini R (1994b) Effects of C/N relationships, N content, pH, and time of culture on growth and gibberellin production of Azospirillum lipoferum cultures. Symbiosis 17:229–236

    CAS  Google Scholar 

  • Piccoli P, Masciarelli O, Bottini R (1996) Metabolism of 17,17(2H2)-Gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21:263–274

    CAS  Google Scholar 

  • Piccoli P, Lucangeli D, Schneider G, Bottini R (1997) Hydrolysis of (17,17-2H2)gibberellin A20-glucoside and (17,17-2H2)gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen free biotin-based chemically-defined medium. Plant Growth Regul 23:179–182

    Article  CAS  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, Sosa CP, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64:207–210

    Article  CAS  Google Scholar 

  • Pirlak M, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184

    Article  CAS  Google Scholar 

  • Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS ONE 8:e69435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primrose S, Dilworth M (1976) Ethylene production by bacteria. J Gen Microbiol 93:177–181

    Article  CAS  PubMed  Google Scholar 

  • Probanza A, García JAL, Palomino MR, Ramos B, Manero FJG (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84

    Article  Google Scholar 

  • Quiroga AM, Berli F, Moreno D, Cavagnaro JB, Bottini R (2009) Abscisic acid sprays significantly increase yield per plant in vine yard grown wine grape (Vitis vinifera L.) cv. Cabernet sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J Plant Growth Regul 28:28–35

    Article  CAS  Google Scholar 

  • Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot 58:211–219

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287(Suppl 1–2):15–21

    Article  CAS  Google Scholar 

  • Ross J, O’Neill D (2001) New interactions between classical plant hormones. Trends Plant Sci 6:2–4

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268(1):285–292

    Article  CAS  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth Publishing Company, Belmont, pp 329–407

    Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151(4):359–374

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    Article  CAS  Google Scholar 

  • Sansberro P, Mroginski L, Bottini R (2004) Abscisic Acid promotes growth of Ilex paraguariensis plants by alleviating diurnal water stress. Plant Growth Regul 42:105–111

    Article  CAS  Google Scholar 

  • Sarig S, Blum A, Okon Y (1988) Improvement of water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agr Sci 110:271–277

    Article  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  CAS  PubMed  Google Scholar 

  • Seki MT, Umezawa KU, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa M, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006a) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006b) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microb 42:155–159

    Article  CAS  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2011) Isolation of Phosphate Solubilizing Microorganism (PSMs) From Soil. J Microbiol Biotechnol Res 1:90–95

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Chapter 7 plant growth-promoting actions of rhizobacteria (review). Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169:577–585

    Article  CAS  PubMed  Google Scholar 

  • St Clair SB, Lynch J (2010) The opening of pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  CAS  Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant, Cell Environ 33:636–647

    Article  Google Scholar 

  • Thompson AJ, Andrews J, Mulholland BJ, McKee JM, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IR, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tien TM, Gaskin MH, Hubbel DH (1979) Plant growth substances produced by A. brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Wagner GH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 21:81–90

    Article  Google Scholar 

  • Travaglia C, Cohen AC, Reinoso H, Castillo C, Bottini R (2007) Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul 26:285–289

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Bottini R (2009) Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop Pasture Sci 60:1131–1136

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Cohen AC, Luna C, Castillo C, Bottini R (2010) Exogenous ABA increases yield in field-grown wheat with a moderate water restriction. J Plant Growth Regul 29:366–374

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microb 42:117–126

    Article  CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

  • Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28:2383–2393

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawoznik MS, Ameneiros M, Benavides MP, Vázquez S, Groppa MD (2011) Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl Microbiol Biotechnol 90:1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zeevaart J (1999) Abscisic acid metabolism and its regulation. In: Hooykaas P, Hall M, Libbenga K (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam, pp 189–207

    Chapter  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang SQ, Outlaw WH Jr (2001) Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant, Cell Environ 24:1045–1054

    Article  CAS  Google Scholar 

  • Ziska LH (2011) Climate change, carbon dioxide and global crop production: food security and uncertainty. In: Dinar A, Mendelsohn R (eds) Handbook on climate change and agriculture. Edward Elgar Publishing Ltd., ltenham and Camberley, UK, pp 9–31

    Google Scholar 

Download references

Acknowledgments

This paper was supported by Fondo para la Investigación Científica y Tecnológica (FONCYT, PICT 2008 1666 to R. Bottini and PICT 2007 02190 to P. Piccoli), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET, PIP 2008 to P. Piccoli) and Secretaría de Ciencia y Técnica-Universidad Nacional de Cuyo to A. Cohen, R. Bottini and P. Piccoli. A. Cohen, R. Bottini and P. Piccoli are fellows of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carmen Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, A.C., Bottini, R., Piccoli, P. (2015). Role of Abscisic Acid Producing PGPR in Sustainable Agriculture. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_9

Download citation

Publish with us

Policies and ethics