Skip to main content

Bioremediation Strategies Employed by Pseudomonas Species

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

With the need of green chemicals and sustainable agroecosystem, biosurfactants’ study and application is becoming imperative. Nowadays, it is known that Rhamnolipids are potent biosurfactants with high potential for bioremediation applications. The elimination of a wide range of pollutants in different ecosystems is an absolute requirement to promote a sustainable development of our society with low environmental impact. Biological processes play a major role in the removal of contaminants and they take advantage of the astonishing catabolic versatility of microorganisms to degrade/convert such compounds. The need to remediate these pollutants from contaminated sites has led to the development of effective, economic and environmentally friendly technologies. One of the current strategies used to enhance this process is the application of Pseudomonas PGPR to remediate contaminated soils in association with plants. Of all the present contaminants, the profound impacts of organic and heavy metal pollutants have attracted worldwide attention. This review focuses on the progress of PGPR for remediation of soils contaminated with the description of certain mechanisms and strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR et al (2001) Physicochemical and antimicrobial properties of new rhamno-lipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Mawgoud AM, Hausmann R, LĂ©pine F, MĂĽller MM, DĂ©ziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Biosurfactants, Microbiology Monographs 20. Springer-Verlag, Berlin. doi:10.1007/978-3-642-14490-5_2

  • Aguirre-Ramı´rez M, Medina G, Gonza´lez-Valdez A, Grosso-Becerra V, Sobero´n-Cha´vez G (2012) The Pseudomonas aeruginosarml BDA Coperon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor Ϭs. Microbiology 158:908–916

    Article  CAS  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and application. Int J Phys Sci 5(12):1807–1817

    CAS  Google Scholar 

  • Al-Awadhi H, Al-Hasan RH, Sorkhoh NA, Salamah S, Radwan SS (2003) Establishing oil-degrading biofilms on gravel particles and glass plates. Int Biodeterior Biodegradation 51(3):181–185

    Article  CAS  Google Scholar 

  • Anderson C, Pederson K, Jakobsson AM (2006) Autoradiographic comparisons of radionuclide adsorption between subsurface anaerobic biofilms and granitic host rocks. Geomicrobiol J 23:15–29

    Article  CAS  Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Contain Hydrol 25:157–170

    Article  CAS  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15(6):591–594

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Barbeau K, Zhang GP, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323

    Article  CAS  PubMed  Google Scholar 

  • Behrends T, Krawczyk-Bärsch E, Arnold T (2012) Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories. Appl Geochem 27:453–462

    Article  CAS  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soap stock as the sole carbon source. J Food Eng 54:283–288

    Article  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:983–993

    Article  Google Scholar 

  • Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds—putting microbial metabolism to work. Trends in Biotech 11:360–367

    Article  CAS  Google Scholar 

  • Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237

    Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas  fluorescens and P. purida. Phytopathology 68:1377–1383

    Google Scholar 

  • Braud A, JĂ©zĂ©quel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Cabrera-Valladares N, Richardson AP, Olvera C, Trevino LG, De´ziel E, Le´pine F, Sobero´n-Cha´vez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    Article  CAS  PubMed  Google Scholar 

  • Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çakmakçı R, Dönmez F, Aydın A, fiahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microbial Cell Fact 8:1–7

    Article  CAS  Google Scholar 

  • Cassidy DP, Hudak AJ, Werkema DD et al (2002) In situ rhamnolipid production at an abandoned petroleum refinery. Soil Sediment Contam 11:769–787

    Article  CAS  Google Scholar 

  • Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97:1503–1508

    Article  CAS  PubMed  Google Scholar 

  • Clifford JS, Ioannidis MA, Legge RL (2007) Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. J Colloid Interf Sci 305:361–365

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis P, Matthijs M (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:777–923. doi:10.1046/j.1462-2920.2002.00369

  • Costa S, VAO G, Nitschke M, Lepine F, Deziel E, Contiero J (2010) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2–1 from cassava wastewater. Proc Biochem 45:1511–1516. doi:10.1016/j.procbio.2010.05.033

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Google Scholar 

  • Dankert J, Hogt AH, Feijen J (1986) Biomedical polymers: bacterial adhesion, colonization, and infection. CRC Critical Rev Biocompat 2:219–301

    CAS  Google Scholar 

  • Darvishi P et al (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B: Biointerf. doi:10.1016/j.colsurfb.01.011

    Google Scholar 

  • Das N, Geetanjali Basak LV, SalamJ Abdul, Abigail MEA (2012) Application of biofilms on remediation of pollutants–an overview. J Microbiol Biotech Res 2(5):783–790

    CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deziel E, Paquette G, Villemur R, et al (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic  aromatic hydrocarbons.  Appl Environ Microbiol 62(6):1908–1912

    Google Scholar 

  • DĂ©ziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alk-anoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Google Scholar 

  • Deziel E, Lepine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid  chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Google Scholar 

  • Diels L, van der Lelie N, Bastiaens L (2002) New development in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 75–82

    Google Scholar 

  • Divya B, Deepak Kumar M (2011) Plant-microbe interaction with enhanced bioremediation. Res J BioTechnol 6(4)

    Google Scholar 

  • Du H, Zhiliang Xu, Morgen Anyan, Oleg Kim, Matthew Leevy W, Shrout JD, Mark Alber (2012) High density waves of the bacterium Pseudomonas aeruginosa in propagating swarms result in efficient colonization of surfaces. Biophys J 103(3):601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edberg F, Kalinowski BE, Holmström SJM, Holm K (2010) Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology 8:278–292

    Article  CAS  PubMed  Google Scholar 

  • Elliott RP (1958) Some properties of pyoverdine, the water soluble pigment of the Pseudomonas. Appl Microbiol 6:241–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 9:2363–2369

    Article  Google Scholar 

  • Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 5:291–295

    Article  CAS  Google Scholar 

  • Flemming HC (1995) Sorption sites in biofilms. Water Sci Technol 32:27–33

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2002) Extracellular polymeric substances: structure, ecological functions, technical relevance. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, p 3

    Google Scholar 

  • Fracchia L, Cavallo M, Giovanna Martinotti M, Banat Ibrahim M (2012) Biosurfactants and bioemulsifiers biomedical and related applications. In: Prof. Dhanjoo N Ghista (ed) Present status and future potentials, Biomedical Science, Engineering and Technology. ISBN: 978-953-307-471- 9

    Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica ID963401, 15

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, DĂ©ziel E, Peter Greenberg E, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192(12):2973–2980

    Google Scholar 

  • Grewal SI, Rainey PB (1991) Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J Gen Microbiol 137(12):2761–2768

    Article  CAS  PubMed  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  PubMed  Google Scholar 

  • Gunther NW, Nunez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta Gupta S, Arora DK, Rai B et al (1991) Ecological aspects of microbial chemotaxis. J Sci Res Banaras Hindu University 41:21–39

    Google Scholar 

  • Gurska J, Wang WX, Gerhardt KE, Khalid AM, Isher-wood DM, Huang XD, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43(12):4472–4479

    Article  CAS  PubMed  Google Scholar 

  • Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77(5):1563–1571

    Google Scholar 

  • Hang Pham T, Webb Jeremy S, Bernd Rehm HA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    Article  CAS  Google Scholar 

  • Harbron RS, Kent CA (1988) Aspects of cell adhesion. In Melo LF, Bott TR, Bernardo CA (Eds) NATO ASI series 145:125–140

    Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  CAS  PubMed  Google Scholar 

  • Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol 29:2280–2285

    Article  CAS  PubMed  Google Scholar 

  • Hommel RK (1994) Formation and function of biosurfactants for degradation of water-insoluble substrates. In: Ratledge C, (ed) Biochemistry of microbial degradation, pp 63–87. Springer, New York

    Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434

    Article  CAS  Google Scholar 

  • Inoue H et al (2003) Tin–carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl Environ Microbiol 69:878–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh S, Suzuki T (1974) Fructose-lipids of arthrobacter, Corynebacteria. Nocardia and mycobacteria grown on fructose, Agric Biol Chem 38

    Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63(4):452–459

    Article  CAS  PubMed  Google Scholar 

  • Joseph B et al (2001) Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Intl J Food Microbiol 64:367–372

    Article  CAS  Google Scholar 

  • Kargi F, Eker S (2005) Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem 40:2105–2111

    Article  CAS  Google Scholar 

  • Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kang Y, Choi O, Jeong Y, Jeong JE, Lim JY, Kim M, Moon JS, Suga H, Hwang I (2007) Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol Microbiol 64(1):165–179

    Article  CAS  PubMed  Google Scholar 

  • Kirchman D, Mitchell R (1982) Contribution of particle-bound bacteria to total micro-heterotrophic activity in five ponds and two marshes. Appl Environ Microbiol 43:200–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kjelleberg S, Givskov M (2007) The biofilm mode of life: mechanisms and adaptations. In: Kjelleberg S, Givskov M (eds) Horizon bioscience, pp 5–21. Wymondham

    Google Scholar 

  • Kohler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming ofPseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182(21):5990–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA (2007) BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189(22):8165–8178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrenz M et al (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Inter Sci 7:12–20

    Article  CAS  Google Scholar 

  • Langley S, Beveridge TJ (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can J Microbiol 45:616–622

    Article  CAS  PubMed  Google Scholar 

  • Law AMJ, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Lewis TA, Paszczynski A, Crawford RL (1999) Identification of an extracellular agent [correction of catalyst] of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis (thiocarboxylate). Biochem Biophys Res Commun 261:562–566

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytorem 4:101–115

    Article  CAS  Google Scholar 

  • Long X, Zhang G, Shen C et al (2013) Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresour Technol 131:1–5

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Luan TG, Yu KS, Zhong Y, Zhou HW, Lan CY, Tam NF (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Ma Y et al (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater. doi:10.1016/j.jhazmat.2008.12.018

    Google Scholar 

  • Magalhaes L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–142. doi:10.1016/j.foodcont.2012.06.009

    Article  CAS  Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macaskie LE et al (2000) Enzymatically mediated bioprecipitation of uranium by Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    Google Scholar 

  • Maneerat S (2005) Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol 27:1263–1272

    Google Scholar 

  • Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegrad 70:141–147

    Article  CAS  Google Scholar 

  • Marques APC, Pires C, Moreira H, Rangel AO, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  • Martinez-Toledo A, Rios-Leal E, Vazquez-Duhalt R, Gonzalez-Chavez Mdel C, Esparza-Garcia JF, Rodriguez-Vazquez R (2006) Role of phenanthrene in rhamnolipid production by P. putida in different media. Environ Technol 27:137–142

    Article  CAS  PubMed  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2000) Effect of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environ Sci Technol 34:4923–4930

    Article  CAS  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Biochem 56:289–314

    CAS  Google Scholar 

  • Mehnaz S, Baig DN, Jamil F, Weselowski B, Lazarovits G (2009) Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J Microbiol Biotechnol 19:1688–1694. doi:10.4014/jmb.0904.04022

    Article  CAS  PubMed  Google Scholar 

  • Meliani A, Bensoltane A (2014) Enhancement of hydrocarbons degradation by use of pseudomonas biosurfactants and biofilms. J Pet Environ Biotechnol 5:68. doi:10.4172/2157-7463.1000168

    Article  CAS  Google Scholar 

  • Meyer JM, and Stintzi A (1998) Iron metabolism and siderophores in Pseudomonas and related species, pp 201–243. In Montie TC (ed) Biotechnology handbooks, vol. 10: Pseudomonas. Plenum Publishing Co., New York

    Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and non fluorescent Pseudomonads. Appl Environ Microbiol 68(6):2745–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RM (1995) Biosurfactant-facilitated remediation of metal-contaminated soils. Environ Health Perspect 103(Suppl 1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilms structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  PubMed  Google Scholar 

  • Moussa TAA, Ahmed AM, Abdel-hamid SMS (2006) Opt imization of cultural conditions for biosurfactant production from Nocardia amarae. J Appl Sci Res 2:844–850

    Google Scholar 

  • MĂĽller MM, KĂĽgler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M et al (2012) Rhamnolipids-Next generation surfactants? J Biotechnol

    Google Scholar 

  • Mulligan CN (2004) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  Google Scholar 

  • Mulligan CN, Wang S (2006) Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng Geol 85:75–81

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard 68 Mater 85:111–125

    Google Scholar 

  • Neilands JB (1982) Microbial envelope proteins related to iron. Annu Rev Microbiol 36:285–309

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar AS, Hingurao KS, Suthar HG (2009) Bioemulsifiers from marine microorganisms. J Sci Ind Res 68:273–277

    CAS  Google Scholar 

  • Neubauer U, Nowak B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferroixamine B. Environ Sci Technol 34:2749–2755

    Article  CAS  Google Scholar 

  • Noordman WH, Ji W, Brusseau ML et al (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32:1806–1812

    Article  CAS  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira FJS, Vazquez L, de Campos NP, de Franca FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44:383–389

    Article  CAS  Google Scholar 

  • Onbasli D, Aslim B (2009) Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol 30:161–163

    CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Pacwa-Plociniczak PGA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry AJ, Parry NJ, Peilow C, Stevenson PS (2013) Combinations of rhamnolipids and enzymes for improved cleaning. Patentno EP 2596087:A1

    Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1 % dirhamnolipid ointment. J Cutan Med Surg 12:142–146

    Article  CAS  PubMed  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Rujiravanit Ratana (2010) Rhamnolipid biosurfactants: production and their potential in environmental biotechnology biosurfactants. In: Ramkrishna S (ed) Landes Bioscience and Springer Science, pp 217–219

    Google Scholar 

  • Puhakka JA, Melin ES, Jarvinen KT, Koro PM, Rintala JA, Hartikainen P, Shieh WK, Ferguson JF (1995) Fluidized bed biofilms for chlorophenol mineralization. Water Sci Technol 31:227–235

    Article  CAS  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyl transferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J et al (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168. doi:10.1016/S0960-8524(03)00114-7

    Article  CAS  PubMed  Google Scholar 

  • Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588

    Article  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar MAeN, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Google Scholar 

  • Rehm Bernd HA (2008) Pseudomonas. In: Model organism, pathogen, cell factory. WILEY-VCH Verlag, GmbH & Co. KGaA, pp 1–153

    Google Scholar 

  • Renfro TD (2013) Rhamnolipid biosurfactant transport. In: Agricultural Soils. Electronic Theses, Treatises and Dissertations. Paper 7571

    Google Scholar 

  • Rogers HJ (1979) Adhesion of microorganisms to surfaces. Academic Press

    Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi G, Majidi E (2008) Influence of plant growth promoting Rhizobacteria on dry matter accumulation of Chickpea (Cicer arietinum L) under field conditions. J Agricul Environ Sci 3(Suppl 2):253–257

    Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rooney AP, Price NP, Ray KJ, Kuo TM (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016. doi:10.1007/s00253-012-4641-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–31

    Google Scholar 

  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian Mustard. Environ Sci Technol 31(6):1636–1644

    Article  CAS  Google Scholar 

  • Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Scheibenbogen K, Zytner R, Lee H, Trevors J (1994) Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J Chem Technol Biotechnol 59(1):53–59

    Article  CAS  Google Scholar 

  • Sekhon Randhawa KK, Rahman Pattanathu KSM (2014) Rhamnolipid biosurfactants—past, present, and future scenario of global market. Front Microbiol. doi:10.3389/fmicb.2014.00454

  • Shabtai Y, Gutnick DL (1985) Tolerance of Acinetobacter calcoaceticus RAG-1 to the cationic surfactant cetyltrimethylammonium bromide: Role of the bioemulsifier emulsan. Appl Environ Microbiol 49(1):192–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain R (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Article  CAS  PubMed  Google Scholar 

  • Singleton P, Sainsbury D (2006) Dictionary of microbiology and molecular biology, 3rd edn. Wiley, Paul Singleton and Diana Sainsbury. ISBN pp 637-638

    Book  Google Scholar 

  • SoberĂłn-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: SoberĂłn-Chávez G (ed) Biosurfactants. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • SoberĂłn-Chávez G, LĂ©pine F, DĂ©ziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725

    Article  PubMed  CAS  Google Scholar 

  • Soto GE, Hultgren SJ (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stipcevic T, Pijac A, Pijac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Article  PubMed  Google Scholar 

  • Tremblay J, DĂ©ziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genom 11:587. doi:10.1186/1471-2164-11-587

    Article  CAS  Google Scholar 

  • Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108. doi:10.3390/ijms11125095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Microbial production of rhamnolipid biosurfactants. In: FlickingerMC (ed) Encyclopedia of industrial biotechnology. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98(4):842–853

    Article  CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Whang LM, Liu PWG, Ma CC et al (2008) Application of biosurfactants, rhamnolipid and surfactin, for enhanced biodegradation of dieselcontaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  PubMed  Google Scholar 

  • White C, Gadd GM (2000) Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett 183(2):313–318

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (1991) Handbook of microbial iron chelates. CRC Press, Boca Raton

    Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Muller C, Wichmann R, KĂĽpper B, ZwickM, Wilhelm S, HausmannR, SyldatkC, Rosenau FandBlankL M (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80–97. doi:10.1186/1475-2859-10-80

  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J et al (2010) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    Article  PubMed Central  CAS  Google Scholar 

  • Xavier JB, Kim W, Foster KR (2011) A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol 79:166–179

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia Gen-Nov and transfer of 7 species of the genus Pseudomonas homology group-II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) Comb-Nov. Microbiol Immunol 36:1251–1275

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Rock CO (2008) RhlA convertsb-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the b-hydroxydecanoyl-b-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

  • Zhang L, Veres-Schalnat Tracey A, Somogyi A, Pemberton JE, Maier RM (2012) Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays. Appl Environ Microbiol 78(24):8611. doi:10.1128/AEM.02111-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Meliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meliani, A. (2015). Bioremediation Strategies Employed by Pseudomonas Species. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_14

Download citation

Publish with us

Policies and ethics