Skyrmions and Electric Fields in Insulating Materials

  • Shinichiro Seki
  • Masahito Mochizuki
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


In insulating materials, conduction electrons and associated emergent fields are absent; instead, magnetic skyrmions in insulators induce spatially inhomogeneous charge distributions through the relativistic spin-orbit interaction. Depending on the symmetry of an underlying crystallographic lattice, skyrmions carry electric dipoles or quadrupoles and can be manipulated by an external electric field. This property may provide an energetically more efficient method to control skyrmions because the electric field in an insulating system causes only negligible Joule heat loss compared with the current-driven approach in a metallic system. In this chapter, this magnetoelectric nature of skyrmions is discussed. Skyrmions also show resonant oscillation against both ac magnetic and electric fields of gigahertz frequency. The interference of these excitations causes unique optical responses called directional dichroism, where the sign reversal of light (microwave) propagation direction gives different absorption spectra.


Faraday Rotation Spin Texture Electric Charge Distribution Crystallographic Unit Cell Inverse Faraday Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Curie, J. Phys. 3, 393 (1894)Google Scholar
  2. 2.
    M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Tokura, S. Seki, N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Phys. Rev. Lett. 95, 087206 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    N. Abe, K. Taniguchi, S.Ohtani, T. Takenobu, Y. Iwasa, T. Arima, Phys. Rev. Lett. 99, 227206 (2007)Google Scholar
  9. 9.
    Y. Tokunaga, Y. Taguchi, T. Arima, Y. Tokura, Nat. Phys. 8, 838 (2012)CrossRefGoogle Scholar
  10. 10.
    J.G. Bos, C.V. Colin, T.T.M. Palstra, Phys. Rev. B 78, 094416 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Seki, S. Ishiwata, Y. Tokura, Phys. Rev. B 86, 060403(R) (2012)Google Scholar
  13. 13.
    C. Jia, S. Onoda, N. Nagaosa, J.H. Han, Phys. Rev. B 74, 224444 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    C. Jia, S. Onoda, N. Nagaosa, J.H. Han, Phys. Rev. B 76, 144424 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.H. Yang, Z.L. Li, X.Z. Lu, M.-H. Whangbo, S.-H. Wei, X.G. Gong, H.J. Xiang, Phys. Rev. Lett. 109, 107203 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J.S. White, I. Levatić, A.A. Omrani, N. Egetenmeyer, K. Prsa, I. Zivkovic, J.L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, H.M. Ronnow, J. Phys. Condens. Matter 24, 432201 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J.S. White, P. Prsa, P. Huang, A.A. Omrani, I. Zivkovic, M. Bartkowiak, H. Berger, A. Magrez, J.L. Gavilano, G. Nagy, J. Zang, H.M. Ronnow, Phys. Rev. Lett. 113, 107203 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Mochizuki, Phys. Rev. Lett. 108, 017601 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    O. Petrova, O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 109, 037603 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, D. Grundler, Nat. Mater. 14, 478 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Nat. Phys. 2, 97 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, Y. Tokura, Nat. Phys. 8, 121 (2011)CrossRefGoogle Scholar
  24. 24.
    G.L.J.A. Rikken, C. Strohm, P. Wyder, Phys. Rev. Lett. 89, 133005 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    J.H. Jung, M. Matsubara, T. Arima, J.P. He, Y. Kaneko, Y. Tokura, Phys. Rev. Lett. 93, 037403 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Mochizuki, S. Seki, Phys. Rev. B 87, 134403 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki, Y. Onose, Y. Tokura, Nat. Comm. 4, 2391 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    N. Ogawa, S. Seki, Y. Tokura, Sci. Rep. 5, 9552 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shinichiro Seki
    • 1
  • Masahito Mochizuki
    • 2
  1. 1.Center for EmergentMatter Science (CEMS)RIKENWakoJapan
  2. 2.Department of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan

Personalised recommendations