Skyrmions and Electric Currents in Metallic Materials

  • Shinichiro Seki
  • Masahito Mochizuki
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


In metallic materials, non-collinear or non-coplanar spin textures such as skyrmions, helices or domain walls give rise to intriguing phenomena via coupling to conduction electrons. In this chapter, we introduce the emergent electromagnetic fields generated by a skyrmion spin texture acting on conduction electrons. These cause the topological Hall effect and the electric-current-driven motion of skyrmions with a significantly small threshold current density jc of 105–106 A/m2, which is five or six orders of magnitude smaller than that of a ferromagnetic domain wall and a helical magnetic structure.


Domain Wall Berry Phase Local Magnetisation Threshold Current Density Magnetic Domain Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Volovik, J. Phys. C 20, L87 (1987)CrossRefGoogle Scholar
  2. 2.
    N. Nagaosa, Y. Tokura, Phys. Scr. T146, 014020 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    N. Nagaosa, X.Z. Yu, Y. Tokura, Phil. Trans. R. Soc. A 370, 5806 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    J. Shibata, Y. Nakatani, G. Tatara, H. Kohno, Y. Ohtani, Phys. Rev. B 73, 020403(R) (2006)Google Scholar
  6. 6.
    J. Iwasaki, M. Mochizuki, N. Nagaosa, Nat. Commun. 4, 1463 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Rosch, Phys. Rev. B 86, 054432 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Nat. Phys. 8, 301 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Iwasaki, M. Mochizuki, N. Nagaosa, Nat. Nanotech. 8, 742 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    C. Pfleiderer, A. Rosch, Nature 465, 880 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Böni, Phys. Rev. Lett. 102, 186602 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Onoda, G. Tatara, N. Nagaosa, J. Phys. Soc. Jpn. 73, 2624 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, Science 291, 2573 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    N. Kanazawa, J.-H. Kim, D.S. Inosov, J.S. White, N. Egetenmeyer, J.L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, Y. Tokura, Phys. Rev. B 86, 134425 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. Sakakibara, Nature 463, 210 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    C. Pfleiderer, D. Reznik, L. Pintschovius, H.v. Löhneysen, M. Garst, A. Rosch, Nature 427, 227 (2004)Google Scholar
  19. 19.
    C. Pfleiderer, P. Böni, T. Keller, U.K. Rössler, A. Rosch, Science 316, 1871 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, C. Pfleiderer, Nature 497, 231 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    L. Berger, Phys. Rev. B 54, 9353 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    J. Grollier, P. Boulenc, V. Cros, A. Hamzić, Vaurés, A. Fert, G. Faini, Appl. Phys. Lett. 83, 509 (2003)Google Scholar
  23. 23.
    M. Tsoi, R. Fontana, S. Parkin, Appl. Phys. Lett. 83, 2617 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R.S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W.H. Butler, P.B. Visscher, D. Lottis, E. Chen, V. Nikitin, M. Krounbi, J. Phys. D Appl. Phys. 46, 074001 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R.A. Duine, K. Everschor, M. Garst, A. Rosch, Science 330, 1648 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, Y. Tokura, Nat. Commun. 3, 988 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    N. Nagaosa, Y. Tokura, Nat. Nanotech. 8, 899 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Nat. Phys. 8, 301 (2012)CrossRefGoogle Scholar
  29. 29.
    S.E. Barnes, S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M. Hayashi, J. Ieda, Y. Yamane, J. Ohe, Y.K. Takahashi, S. Mitani, S. Maekawa, Phys. Rev. Lett. 108, 147202 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    K. Tanabe, D. Chiba, J. Ohe, S. Kasai, H. Kohno, S.E. Barnes, S. Maekawa, K. Kobayashi, T. Ono, Nat. Comm. 3 845 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shinichiro Seki
    • 1
  • Masahito Mochizuki
    • 2
  1. 1.Center for EmergentMatter Science (CEMS)RIKENWakoJapan
  2. 2.Department of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan

Personalised recommendations