Advertisement

Observation of Skyrmions in Magnetic Materials

  • Shinichiro Seki
  • Masahito Mochizuki
Chapter
  • 1.5k Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Experimentally, skyrmion spin textures are observed in various magnetic systems with distinctive characteristics. In this chapter, some typical material environments, i.e. (1) non-centrosymmetric ferromagnets, (2) centrosymmetric ferromagnets with uniaxial anisotropy and (3) surface/interface of ferromagnetic monolayers, are introduced for realising skyrmion spin textures. (1) and (3) are systems with broken space-inversion symmetry, and thus, the Dzyaloshinskii–Moriya interaction is active and serves as a key source for stabilising skyrmion spin textures. For (2), in contrast, the breaking of space-inversion symmetry is not relevant, but an interplay between the dipole–dipole interaction and magnetic anisotropies is important for the realisation of magnetic skyrmions. In all cases, the typical size of a magnetic skyrmion ranges from sub-micrometre to nanometre, which implies that specific experimental techniques are required to identify the emergence of skyrmion spin textures directly.

Keywords

Domain Wall Magnetic Anisotropy Triangular Lattice Spin Modulation Bloch Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.N. Bogdanov, D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989)Google Scholar
  2. 2.
    A. Bogdanov, A. Hubert, J. Magn. Magn. Mat. 138, 255 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRefGoogle Scholar
  5. 5.
    T. Moriya, Phys. Rev. 120, 91 (1960)ADSCrossRefGoogle Scholar
  6. 6.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C. Pappas, E. Leliev̀re-Berna, P. Falus, P.M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, B. Farago, Phys. Rev. Lett. 102, 197202 (2009)Google Scholar
  8. 8.
    C. Pfleiderer, T. Adams, A. Bauer, W. Biberacher, B. Binz, F. Birkelbach, P. Böni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz, S. Mühlbauer, W. Munzer, A. Neubauer, B. Pedersen, A. Rosch, J. Phys. Condens. Matter 22, 164207 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A. Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor, M. Garst, A. Rosch, Phys. Rev. Lett. 107, 217206 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Tonomura X.Z. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H.S. Park, Y. Tokura, Nano Lett. 12, 1673 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    W. Munzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, C. Pfleiderer, Phys. Rev. B 81, 041203(R) (2010)Google Scholar
  12. 12.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D. Morikawa, K. Shibata, N. Kanazawa, X.Z. Yu, Y. Tokura, Phys. Rev. B 88, 024408 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Milde, D. Köhler, J. Seidel, L.M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schüte, A. Rosch, Science 340, 1076 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Mater. 10, 106 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotech. 8, 723 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S.V. Grigoriev, N.M. Potapova, S.-A. Siegfried, V.A. Dyadkin, E.V. Moskvin, V. Dmitriev, D. Menzel, C.D. Dewhurst, D. Chernyshov, R.A. Sadykov, L.N. Fomicheva, A.V. Tsvyashchenko, Phys. Rev. Lett. 110, 207201 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S. Seki, J.-H. Kim, D.S. Inosov, R. Georgii, B. Keimer, S. Ishiwata, Y. Tokura, Phys. Rev. B 85, 220406 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S. Seki, S. Ishiwata, Y. Tokura, Phys. Rev. B 86, 060403 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Phys. Rev. Lett. 108, 237204 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    P. Bak, M.H. Jensen, J. Phys. C 13, L881 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    K. Kadowaki, K. Okuda, M. Date, J. Phys. Soc. Jpn. 51, 2433 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    M. Date, K. Okuda, K. Kadowaki, J. Phys. Soc. Jpn. 42, 1555 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    S. Kusaka, K. Yamamoto, T. Komatsubara, Y. Ishikawa, Solid State Commun. 20, 925 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Rtiz, P.G. Niklowitz, P. B oni, Phys. Rev. Lett. 102, 186602 (2009)Google Scholar
  28. 28.
    M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Science 311, 359 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    A.B. Butenko, A.A. Leonov, U.K. Rößler, A.N. Bogdanov, Phys. Rev. B 82, 052403 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    A.N. Bogdanov, U.K. Rößler, M. Wolf, K.-H. Müller, Phys. Rev. B 66, 214410 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    A.B. Butenko, A.A. Leonov, A.N. Bogdanov, U.K. Rößler, J. Phys. Conf. Ser. 200, 042012 (2009)CrossRefGoogle Scholar
  32. 32.
    E.A. Giess, Science 208, 938 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    Y.S. Lin, J. Grundy, E.A. Giess, Phys. Lett. 23, 485 (1973)Google Scholar
  34. 34.
    A.P. Malozemoff, J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979), pp. 306–314Google Scholar
  35. 35.
    T. Garel, S. Doniach, Phys. Rev. B 26, 325 (1982)ADSCrossRefGoogle Scholar
  36. 36.
    T. Suzuki, J. Magn. Magn. Mater. 31–34, 1009 (1983)Google Scholar
  37. 37.
    A. Hubert, R. Schäfer, Magnetic Domains (Springer, Berlin/New York, 1998)Google Scholar
  38. 38.
    A Correspondent, Nature 240, 184 (1972)ADSGoogle Scholar
  39. 39.
    N. Nagaosa, X.Z. Yu, Y. Tokura, Phil. Trans. R. Soc. A 370, 5806 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    X.Z. Yu, M. Mostovoy, Y. Tokunaga, W. Zhang, K. Kimoto, Y. Matsui, Y. Kaneko, N. Nagaosa, Y. Tokura, Proc. Natl. Acad. Sci. U.S.A. 109, 8856 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    X.Z. Yu, Y. Tokunaga, Y. Kaneko, W.Z. Zhang, K. Kimoto, Y. Matsui, Y. Taguchi, Y. Tokura, Nat. Commun. 5, 4198 (2014)Google Scholar
  42. 42.
    S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blügel, R. Wiesendanger, Science 288, 1805 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Nat. Phys. 7, 713 (2011)CrossRefGoogle Scholar
  44. 44.
    N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Science 341, 636 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shinichiro Seki
    • 1
  • Masahito Mochizuki
    • 2
  1. 1.Center for EmergentMatter Science (CEMS)RIKENWakoJapan
  2. 2.Department of Physics and MathematicsAoyama Gakuin UniversitySagamiharaJapan

Personalised recommendations