Ab Initio Transport Calculations for Functionalized Graphene Flakes on a Supercomputer

  • Michael Walz
  • Alexei Bagrets
  • Ferdinand Evers
  • Ivan Kondov
Conference paper


We present ab initio transport studies of large graphene flakes focusing on the local current density j(r) as it arises from a dc-transport measurement. Such ab initio transport calculations for sufficiently large flakes can be successfully tackled only using well scaling ab initio packages capable for transport calculations in thin film geometries. We employ the FHI-aims /AitransS packages to study the effect of disorder on the local current density in graphene flakes, in particular, the effect of chemical functionalization on mesoscopic fluctuations of the current density. Simulating graphene flakes with several thousands of atoms, we clearly see the qualitative effects of quantum interference and mesoscopic fluctuations in such systems. We also discuss the parallelization and optimization techniques, which we implemented into the transport module AitransS to allow efficient ab initio transport calculation on Cray XE6 and XC40 supercomputers.


Density Functional Theory Transport Calculation Graphene Flake Local Current Density Wall Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge HLRS Stuttgart for granting us computing time on the Hermit and Hornet systems.


  1. 1.
    Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., Scheffler, M.: Comput. Phys. Commun. 180(11), 2175 (2009). doi:10.1016/j.cpc.2009.06.022. CrossRefGoogle Scholar
  2. 2.
    Bagrets, A.: J. Chem. Theory Comput. 9(6), 2801 (2013). doi:10.1021/ct4000263. CrossRefGoogle Scholar
  3. 3.
    Wilhelm, J., Walz, M., Stendel, M., Bagrets, A., Evers, F.: Phys. Chem. Chem. Phys. 15, 6684 (2013). doi:10.1039/C3CP44286A. CrossRefGoogle Scholar
  4. 4.
    Arnold, A., Weigend, F., Evers, F.: J. Chem. Phys. 126(17), 174101 (2007). doi:
  5. 5.
    Walz, M., Bagrets, A., Evers, F.: Local current density calculations for molecular films from ab initio. J. Chem. Theory Comput. (accepted, 2015).Google Scholar
  6. 6.
    Evers, F., Arnold, A.: In: Röthig, C., Vojta, M. (eds.) CFN Lectures on Functional Nanostructures - Volume 2: Nanoelectronics. Springer, Berlin/Heidelberg (2011)Google Scholar
  7. 7.
    Wilhelm, J., Walz, M., Evers, F.: Phys. Rev. B 89, 195406 (2014). doi:10.1103/PhysRevB.89.195406. CrossRefGoogle Scholar
  8. 8.
    Walz, M., Wilhelm, J., Evers, F.: Phys. Rev. Lett. 113, 136602 (2014). doi:10.1103/PhysRevLett.113.136602. CrossRefGoogle Scholar
  9. 9.
    Walz, M., Evers, F.: (in preparation)Google Scholar
  10. 10.
    Blackford, L.S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.J., Lederer, H.: J. Phys. Condens. Matter 26(21), 213201 (2014). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Walz
    • 1
  • Alexei Bagrets
    • 2
  • Ferdinand Evers
    • 2
  • Ivan Kondov
    • 3
  1. 1.Institute of Nanotechnology and Institut für Theorie der Kondensierten MaterieKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Steinbuch Centre for ComputingKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations