Large Scale Numerical Simulations of Planetary Interiors

  • Ana-Catalina PlesaEmail author
  • Christian Hüttig
  • Maxime Maurice
  • Doris Breuer
  • Nicola Tosi
Conference paper


The massive increase of computational power over the past decades has established numerical models of planetary interiors to one of the principal tools to investigate the thermo-chemical evolution of terrestrial bodies. Large scale computational models have become state of the art to investigate the interior heat transport, surface tectonics and chemical differentiation of planetary bodies across the Solar System and beyond. In the present work we present large scale numerical simulations performed using the mantle convection code Gaia in spherical and Cartesian geometry. The results have been obtained on the HLRS system Hornet running on 54 × 103 computational cores. The strong scaling results show an optimal speedup for a grid with 55 million computational points corresponding to 275 million unknowns.


Rayleigh Number Domain Decomposition Mantle Convection Planetary Body Magma Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Helmholtz Association through the research alliance “Planetary Evolution and Life” and through the grant VG-NG-1017, by the Deutsche Forschungsgemeinschaft (grant TO 704/1-1), and by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance. Computational time has been provided by the High-Performance Computing Center Stuttgart (HLRS) through the project Mantle Thermal and Compositional Simulations (MATHECO).


  1. 1.
    Breuer, D., Moore, W.B.: Dynamics and thermal history of the terrestrial planets, the moon, and Io. Treatise Geophys. 10, 299–348 (2007)CrossRefGoogle Scholar
  2. 2.
    Charlier, B., Grove, T.L., Zuber, M.T.: Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett. 363, 50–60 (2013)CrossRefGoogle Scholar
  3. 3.
    Christensen, U.: Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. R. Astron. Soc. 77, 343–384 (1984)CrossRefGoogle Scholar
  4. 4.
    Elkins-Tanton, L.T., Parmentier, E.M., Hess, P.C.: Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38, 1753–1771 (2003)CrossRefGoogle Scholar
  5. 5.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 2nd revised edn. Springer, Berlin (1999). ISBN: 3-540-65373-2CrossRefzbMATHGoogle Scholar
  6. 6.
    Foley, C.N., Wadhwa, M., Borg, L.E., Janney, P.E., Hines, R., Grove, T.L.: The early differentiation history of Mars from182W–142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)CrossRefGoogle Scholar
  7. 7.
    Grasset, O., Parmentier, E.M.: Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution. J. Geophys. Res. 103, 18,171–18,181 (1998)Google Scholar
  8. 8.
    Hofmann, A.W.: Mantle geochemistry: the message from oceanic volcanism. Nature 385(6613), 219–229 (1997)CrossRefGoogle Scholar
  9. 9.
    Hüttig, C., Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids. Phys. Earth Planet. Inter. (2008) doi:10.1016/j.pepi.2008.07.007Google Scholar
  10. 10.
    Hüttig, C., Stemmer, K.: The spiral grid: a new approach to discretize the sphere and its application to mantle convection. Geochem. Geophys. Geosyst. 9, Q02018 (2008). doi:10.1029/2007GC001581CrossRefGoogle Scholar
  11. 11.
    Hüttig, C., Tosi, N., Moore, W.B.: An improved formulation of the incompressible Navier-Stokes equations with variable viscosity. Phys. Earth Planet. Inter. 220, 11–18 (2013). doi:10.1016/j.pepi.2013.04.002CrossRefGoogle Scholar
  12. 12.
    Ismail-Zadeh, A. Tackley, P.J.: Computational Methods for Geodynamics. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Karato, S., Paterson, M.S., Fitz Gerald, J.D.: Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91, 8151–8176 (1986)CrossRefGoogle Scholar
  14. 14.
    Maurice, M., Tosi, N., Plesa, A.-C., Breuer, D.: Evolution and Consequences of Magma Ocean Solidification. European Geoscience Union, EGU2015-884 (2015). Retrieved on April 18, 2015, from
  15. 15.
    Plesa, A.-C.: Mantle convection in a 2D spherical shell. In: Rückemann, C.-P., Christmann, W., Saini, S., Pankowska, M. (eds.) Proceedings of the First International Conference on Advanced Communications and Computation (INFOCOMP 2011), Barcelona, pp. 167–172, 23–29 October 2011. ISBN:978-1-61208-161-8. Retrieved on November 3, 2011, from
  16. 16.
    Plesa, A.-C., Tosi, N., Hüttig, C.: Thermo-chemical convection in planetary mantles: advection methods and magma ocean overturn simulations. In: Rückemann, C.-P. (ed.) Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences. IGI Global, Hershey (2013)Google Scholar
  17. 17.
    Plesa, A.-C., Tosi, N., Breuer, D.: Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014). doi:10.1016/j.epsl.2014.06.034CrossRefGoogle Scholar
  18. 18.
    Roberts, J.H., Zhong, S.: Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. E: Planets 111, E06013 (2006)Google Scholar
  19. 19.
    Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  20. 20.
    Solomatov, V.S.: Fluid dynamics of a terrestrial magma ocean. In: Canup, R.M., Righter, K. (eds.) Origin of the Earth and Moon. University of Arizona Press, Tucson (2000)Google Scholar
  21. 21.
    Tackley, P.J., King, S.D.: Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4(4), 8302 (2003). doi:10.1029/2001GC000214CrossRefGoogle Scholar
  22. 22.
    Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. Ser. 6 7, 237–265 (1904)CrossRefzbMATHGoogle Scholar
  23. 23.
    Tosi, N., Plesa, A.-C., Breuer, D.: Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J. Geophys. Res. Planets 118, 1–17 (2013). doi:10.1002/jgre.20109Google Scholar
  24. 24.
    van Keken, P.E., King, S.D., Schmeling, H., Christensen, U.R., Neumeister, D., Doin, M.-P.: A comparison of methods for the modeling of thermochemical convection. J. Geophys. Res. 102, 22477–22495 (1997)CrossRefGoogle Scholar
  25. 25.
    Weber, R.C., Lin, P.Y., Garnero, E.J., Williams, Q., Lognonne, P.: Seismic detection of the lunar core. Science 331, 309–312 (2011). doi:10.1126/science.1199375CrossRefGoogle Scholar
  26. 26.
    Zhong, S., McNamara, A.K., Tan, E., Moresi, L., Gurnis, M.: A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008). doi:10.1029/2008GC002048CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana-Catalina Plesa
    • 1
    Email author
  • Christian Hüttig
    • 1
  • Maxime Maurice
    • 1
  • Doris Breuer
    • 1
  • Nicola Tosi
    • 2
  1. 1.German Aerospace CenterInstitute of Planetary ResearchBerlinGermany
  2. 2.Department of Planetary GeodesyTechnical University BerlinBerlinGermany

Personalised recommendations