Skip to main content

MCTDHB Physics and Technologies: Excitations and Vorticity, Single-Shot Detection, Measurement of Fragmentation, and Optimal Control in Correlated Ultra-Cold Bosonic Many-Body Systems

  • Conference paper
  • First Online:

Abstract

Here we report on further applications, developments, expansion, and proliferation of the Multi-Configurational Time-Dependent Hartree for Bosons (MCTDHB) method in the context of ultra-cold atomic systems. In this year we put our main efforts to understanding and generalizing vortices—two-dimensional (2D) and three-dimensional (3D) quantum objects carrying angular momentum—from the perspective of the many-body physics. We have studied static properties and quantum dynamics of vortices confined in simple parabolic traps and in circular traps. Particular emphasis has been put on the loss of coherence and build-up of the fragmentation. Complimentary, we continue to develop the MCTDHB method spanning several directions of the theoretical and computational physics as well as optimal-control theory: (a) the linear-response on-top of the MCTDHB method (LR-MCTDHB) has been reformulated in a compact block form, expanded for general inter-particle interactions, and benchmarked against the exactly-solvable harmonic-interaction model; (b) a new analysis tool capable of simulating the outcomes of typical shots generated in the experimental detection of ultra-cold atomic systems has been invented, tested, and applied; (c) a novel algorithm offering a direct quantitative measurement of the possible fragmentation in bosonic systems has been proposed and applied; (d) the optimal-control Chopped RAndom Basis (CRAB) algorithm has been merged with the MCTDHB package and applied to manipulate quantum systems. Implications and further perspectives and future research plans are briefly discussed and addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999); Leggett, A.J.: Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)

    Google Scholar 

  2. Pethick, C., Smith, H.: Bose-Einstein Condensation in Dilute Gases, 2nd edn. Cambridge University Press, New York (2008)

    Google Scholar 

  3. Köhler, T., Góral, K., Julienne, P.S.: Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006)

    Google Scholar 

  4. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Role of Excited States in the Splitting of a Trapped Interacting Bose-Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 99, 030402 (2007)

    Google Scholar 

  5. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

    Google Scholar 

  6. Sakmann, K., Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Exact Quantum Dynamics of a Bosonic Josephson Junction. Phys. Rev. Lett. 103, 220601 (2009)

    Google Scholar 

  7. Lode, A.U.J., Sakmann, K., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)

    Google Scholar 

  8. Lode, A.U.J., Streltsov, A.I., Sakmann, K., Alon, O.E., Cederbaum, L.S.: How an interacting many-body system tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 109, 13521 (2012)

    Google Scholar 

  9. Streltsov, A.I., Sakmann, K., Lode, A.U.J., Alon, O.E., Cederbaum, L.S.: The multiconfigurational time-dependent Hartree for bosons package, version 2.x, Heidelberg (2013). http://MCTDHB.org

  10. Streltsov, A.I., Cederbaum, L.S., Alon, O.E., Sakmann, K., Lode, A.U.J., Grond, J., Streltsova, O.I., Klaiman, S.: The multiconfigurational time-dependent Hartree for bosons package, version 3.x,, Heidelberg (2006-Present). http://MCTDHB.org

  11. Streltsov, A.I., Streltsova, O.I.: The multiconfigurational time-dependent Hartree for bosons laboratory, version 1.5. http://MCTDHB-lab.org; http://QDlab.org (2015)

  12. Lode, A.U.J., Tsatsos, M.C.: The recursive multiconfigurational time-dependent Hartree for bosons package, version 1.0. http://ultracold.org; http://r-mctdhb.org; http://schroedinger.org (2014)

  13. Cray clusters Hermit, Hornet and NEC Nehalem cluster Laki at the High Performance Computing Center Stuttgart (HLRS). https://www.hlrs.de

  14. bwGRiD, member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg). http://www.bw-grid.de

  15. Hybrid computing complex K100 (Keldysh Institute of Applied Mathematics, RAS). http://www.kiam.ru

  16. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: General mapping for bosonic and fermionic operators in Fock space. Phys. Rev. A 81, 022124 (2010). http://dx.doi.org/10.1103/PhysRevA.81.022124

    Google Scholar 

  17. Meyer, H.-D., Gatti, F., Worth, G.A. (eds.): Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  18. Proukakis, N.P., Gardiner, S.A., Davis, M.J., Szymanska, M.H. (eds.): Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics, vol. 1. Cold Atoms Series. Imperial College Press, London (2013)

    Google Scholar 

  19. Lode, A.U.J., Sakmann, K., Doganov, R.A., Grond, J., Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Numerically-exact Schrödinger dynamics of closed and open many-boson systems with the MCTDHB package, HLRS report for 2012. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013. Springer, Heidelberg (2013)

    Google Scholar 

  20. Klaiman, S., Lode, A.U.J., Sakmann, K., Streltsova, O.I., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Quantum Many-Body Dynamics of Trapped Bosons with the MCTDHB Package: Towards New Horizons with Novel Physics, HLRS report for 2013. In Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014. Springer, Heidelberg (2015)

    Google Scholar 

  21. Weiner, S.E., Tsatsos, M.C., Cederbaum, L.S., Lode, A.U.J.: Angular momentum in interacting many-body systems hides in phantom vortices (2014). arXiv:1409.7670

    Google Scholar 

  22. Tsatsos, M.C., Lode, A.U.J.: Vortex nucleation through fragmentation in a stirred resonant Bose-Einstein condensate (2014). arXiv:1410.0414

    Google Scholar 

  23. Wells, T., Lode, A.U.J., Bagnato, V.S., Tsatsos, M.C.: Vortex reconnections in anisotropic trapped three-dimensional Bose-Einstein condensates. J. Low Temp. Phys. 0022-2291 (2015); arXiv:1410.2859 (2014)

    Google Scholar 

  24. Klaiman, S., Lode, A.U.J., Streltsov, A.I., Cederbaum, L.S., Alon, O.E.: Breaking the resilience of a two-dimensional Bose-Einstein condensate to fragmentation. Phys. Rev. A 90, 043620 (2014)

    Google Scholar 

  25. Klaiman, S., Alon, O.E.: Spatially partitioned many-body vortices (2014). arXiv:1412.4377

    Google Scholar 

  26. Alon, O.E.: Many-body excitation spectra of trapped bosons with general interaction by linear response. J. Phys. Conf. Ser. 594, 012039 (2015)

    Google Scholar 

  27. Theisen, M.: Excited states of Bose-Einstein condensates: linear response vs. Many-body dynamics. Bachelor Thesis, Department of Physics and Astronomy, University of Heidelberg (2014)

    Google Scholar 

  28. Sakmann, K., Kasevich, M.: Single shot simulations of dynamic quantum many-body systems (2015). arXiv:1501.03224

    Google Scholar 

  29. Streltsova, O.I., Streltsov, A.I.: Interferometry with correlated matter-waves (2014). arXiv:1412.4049

    Google Scholar 

  30. Brouzos, I., Streltsov, A.I., Negretti, A., Said, R.S., Caneva, T., Montangero, S., Calarco, T.: Quantum speed limit and optimal control of many-boson dynamics (2014). arXiv:1412.6142

    Google Scholar 

  31. Donnelly, R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  32. Video references. Time evolution of the density, natural orbitals, and phase http://youtu.be/ezbdLWvSbBI; Scan of reference point through g (1) at t = 115 and t = 450 http://youtu.be/whRL8haF4RA and http://youtu.be/gG7dprvRWGg (2015)

  33. Abo-Shaeer, J.R., Raman, C., Vogels, J.M., Ketterle, W.: Observation of Vortex Lattices in Bose-Einstein Condensates. Science 292, 476 (2001)

    Google Scholar 

  34. Abrikosov, A.A.: On the Magnetic Properties of Superconductors of the Second Group. Sov. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  35. Tacoma Narrows Bridge (1940). http://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)

  36. Hindmarsh, M.B., Kibble, T.W.B.: Cosmic strings. Rep. Prog. Phys. 58, 477 (1995)

    MathSciNet  Google Scholar 

  37. Video references. Vortex reconnections for the isotropic trap with ε = 1. http://youtu.be/VLMY1eYLr0g; Vortex reconnections for the anisotropic trap with ε = 2 and ε = 3. http://youtu.be/r5pY7pfMTUg and http://youtu.be/ifEFffVv93U

  38. Doganov, R.A., Klaiman, S., Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Two trapped particles interacting by a finite-range two-body potential in two spatial dimensions. Phys. Rev. A 87, 033631 (2013)

    Google Scholar 

  39. Christensson, J., Forssén, C., Åberg, S., Reimann, S.M.: Effective-interaction approach to the many-boson problem. Phys. Rev. A 79, 012707 (2009)

    Google Scholar 

  40. Nozières, P., Saint James, D.: Particle vs. pair condensation in attractive Bose liquids. J. Phys. France 43, 1133 (1982)

    Google Scholar 

  41. Nozières, P.: In: Griffin, A., Snoke, D.W., Stringari, S. (eds.) Bose-Einstein Condensation. Cambridge University Press, Cambridge, England (1996)

    Google Scholar 

  42. Spekkens, R.W., Sipe, J.E.: Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys. Rev. A 59, 3868 (1999)

    Google Scholar 

  43. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: General variational many-body theory with complete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)

    Google Scholar 

  44. Mueller, E.J., Ho, T.-L., Ueda, M., Baym, G.: Fragmentation of Bose-Einstein condensates. Phys. Rev. A 74, 033612 (2006)

    Google Scholar 

  45. Bader, P., Fischer, U.R.: Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap. Phys. Rev. Lett. 103, 060402 (2009)

    Google Scholar 

  46. Fischer, U.R., Bader, P.: Interacting trapped bosons yield fragmented condensate states in low dimensions. Phys. Rev. A 82, 013607 (2010)

    Google Scholar 

  47. Zhou, Q., Cui, X.: Fate of a Bose-Einstein Condensate in the Presence of Spin-Orbit Coupling. Phys. Rev. Lett. 110, 140407 (2013)

    Google Scholar 

  48. Kawaguchi, Y.: Goldstone-mode instability leading to fragmentation in a spinor Bose-Einstein condensate. Phys. Rev. A 89, 033627 (2014)

    Google Scholar 

  49. Song, S.-W., Zhang, Y.-C., Zhao, H., Wang, X., Liu, W.-M.: Fragmentation of spin-orbit-coupled spinor Bose-Einstein condensates. Phys. Rev. A 89, 063613 (2014)

    Google Scholar 

  50. Kang, M.-K., Fischer, U.R.: Revealing Single-Trap Condensate Fragmentation by Measuring Density-Density Correlations after Time of Flight. Phys. Rev. Lett. 113, 140404 (2014)

    Google Scholar 

  51. Penrose, O., Onsager, L.: Bose-Einstein Condensation and Liquid Helium. Phys. Rev. 104, 576 (1956)

    MATH  Google Scholar 

  52. Löwdin, P.-O.: Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev. 97, 1474 (1955)

    MathSciNet  MATH  Google Scholar 

  53. Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices: Coulson’s Challenge, vol. 72. Lectures Notes in Chemistry. Springer, Berlin (2000)

    MATH  Google Scholar 

  54. Streltsov, A.I.: Quantum systems of ultracold bosons with customized interparticle interactions. Phys. Rev. A 88, 041602(R) (2013)

    Google Scholar 

  55. Streltsova, O.I., Alon, O.E., Cederbaum, L.S., Streltsov, A.I.: Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions. Phys. Rev. A 89, 061602(R) (2014)

    Google Scholar 

  56. Cederbaum, L.S., Streltsov, A.I.: Self-consistent fragmented excited states of trapped condensates. Phys. Rev. A 70, 023610 (2004)

    Google Scholar 

  57. Corman, L., Chomaz, L., Bienaimé, T., Desbuquois, R., Weitenberg, C., Nascimbène, S., Dalibard, J., Beugnon, J.: Quench-Induced Supercurrents in an Annular Bose Gas. Phys. Rev. Lett. 113, 135302 (2014)

    Google Scholar 

  58. Grond, J., Streltsov, A.I., Lode, A.U.J., Sakmann, K., Cederbaum, L.S., Alon, O.E.: Excitation spectra of many-body systems by linear response: General theory and applications to trapped condensates. Phys. Rev. A 88, 023606 (2013)

    Google Scholar 

  59. Alon, O.E., Streltsov, A.I., Cederbaum, L.S.: Unified view on linear response of interacting identical and distinguishable particles from multiconfigurational time-dependent Hartree methods. J. Chem. Phys. 140, 034108 (2014)

    Google Scholar 

  60. Cohen, L., Lee, C.: Exact reduced density matrices for a model problem. J. Math. Phys. 26, 3105 (1985)

    MathSciNet  Google Scholar 

  61. Gajda, M., Załuska-Kotur, M.A., Mostowski, J.: Destruction of a Bose-Einstein condensate by strong interactions. J. Phys. B 33, 4003 (2000)

    Google Scholar 

  62. Yan, J.: Harmonic Interaction Model and Its Applications in Bose-Einstein Condensation. J. Stat. Phys. 113, 623 (2003)

    MathSciNet  MATH  Google Scholar 

  63. Gaida, M.: Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions. Phys. Rev. A 73, 023603 (2006)

    Google Scholar 

  64. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Formation and Dynamics of Many-Boson Fragmented States in One-Dimensional Attractive Ultracold Gases. Phys. Rev. Lett. 100, 130401 (2008)

    Google Scholar 

  65. Streltsov, A.I., Alon, O.E., Cederbaum, L.S.: Swift Loss of Coherence of Soliton Trains in Attractive Bose-Einstein Condensates. Phys. Rev. Lett. 106, 240401 (2011)

    Google Scholar 

  66. Doria, P., Calarco, T., Montangero, S.: Optimal Control Technique for Many-Body Quantum Dynamics. Phys. Rev. Lett. 106, 190501 (2011); Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011)

    Google Scholar 

  67. Bhattacharyya, K.: Quantum decay and the Mandelstam-Tamm-energy inequality. J. Phys. A 16, 2993 (1983); Pfeifer. P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365 (1993); Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188 (1998); Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003); Levitin, L.B., Toffoli, T.: Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight. Phys. Rev. Lett. 103 160502 (2009)

    Google Scholar 

  68. Krönke, S., Cao, L., Vendrell, O., Schmelcher, P.: Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: the multi-layer multi-configuration time-dependent Hartree method for bosons. New J. Phys. 15, 063018 (2013); Cao, L., Krönke, S., Vendrell, O., Schmelcher, P.: The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. J. Chem. Phys. 139, 134103 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Financial support by the DFG is gratefully acknowledged. OEA acknowledges funding by the Israel Science Foundation (grant No. 600/15). SEW and TW acknowledge financial support by the DAAD-RISE program, AUJL acknowledges funding by the Swiss SNF and the NCCR Quantum Science and Technology, MCT acknowledges funding by FAPESP. AUJL, SEW, and TW acknowledge the hospitality of Vanderlei Bagnato and the CEPOF-USP. TC and SM acknowledge support from the European Commission through the grants QIBEC (No. 284584) and SIQS, and from the DFG through SFB TR21.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alon, O.E. et al. (2016). MCTDHB Physics and Technologies: Excitations and Vorticity, Single-Shot Detection, Measurement of Fragmentation, and Optimal Control in Correlated Ultra-Cold Bosonic Many-Body Systems. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_3

Download citation

Publish with us

Policies and ethics