Interfacial Properties and Growth Dynamics of Semiconductor Interfaces

  • Phil Rosenow
  • Andreas Stegmüller
  • Josua Pecher
  • Ralf TonnerEmail author
Conference paper


We present computational results on dynamics and properties of semiconductor materials and interfaces. The adsorption of cyclooctyne on silicon can be shown to proceed barrierless into an on-top structure. Comparing different interfaces of the GaP/Si system, a preference for mixed interfaces (i.e. not purely Si/Ga or Si/P) can be found and understood in terms of the electrostatic potential across the interface and chemical bonding specifics. In further work, the electronic structure of mixed III/V semiconductors will be studied in the way described here for GaAs and used for the prediction of optical properties.


Adsorption Mode Nudge Elastic Band True Random Number Generator Periodic Density Functional Theory Density Functional Theory Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the research training group (Graduiertenkolleg, DFG) 1782 “Functionalization of Semiconductors”, the collaborative research centre (Sonderforschungsbereich, DFG) 1083 “Structure and Dynamics of Internal Interfaces” and the Beilstein Institut, Frankfurt am Main, for support.


  1. 1.
    Mette, G., Dürr, M., Bartholomäus, R., Koert, U., Höfer, U.: Real-space adsorption studies of cyclooctyne on Si(001). Chem. Phys. Lett. 556, 70 (2013)CrossRefGoogle Scholar
  2. 2.
    Schober, C.: Theoretische Untersuchungen der Adsorption von Ethin und Cyclooctin auf der Si(001)-Oberfläche. Master’s thesis, Philipps-Universität Marburg (2012)Google Scholar
  3. 3.
    Jónsson, H., Mills, G., Jacobsen, K.W.: In: Berne, B.J., Ciccotti, G., Coker, D.F.: Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore (1998)Google Scholar
  4. 4.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  7. 7.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  8. 8.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  9. 9.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Erratum: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  10. 10.
    Grimme, S.: Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1(2), 211 (2011)CrossRefGoogle Scholar
  11. 11.
    Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011)CrossRefGoogle Scholar
  12. 12.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
  13. 13.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  14. 14.
    Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hestenes, M.R., Stiefel, E.: Methods of conjugate gradient for solving linear systems. J. Res. Natl. Bur. Stanf. 49(6), 409 (1952)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Nocedal, E.: Updating quasi-newton matrices with limited storage. Math. Comput. 35, 773 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Born, M., Oppenheimer, R.: Zur Quantentheorie der Molekeln. Ann. Phys. 84, 457 (1927)Google Scholar
  18. 18.
    Verlet, R.: Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)Google Scholar
  19. 19.
    Verlet, L.: Computer “experiments” on classical fluids. ii. equilibrium correlation functions. Phys. Rev. 165(1), 201 (1967)Google Scholar
  20. 20.
    Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984)CrossRefGoogle Scholar
  21. 21.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)CrossRefGoogle Scholar
  22. 22.
    D.J. Evans, B.L. Holian, The nose-hoover thermostat. J. Chem. Phys. 83(8), 4069 (1985)Google Scholar
  23. 23.
    S.F. Bent, Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf. Sci. 500, 879 (2002)CrossRefGoogle Scholar
  24. 24. true random number service. URL Accessed 21.04.2015
  25. 25.
    Stegmüller, A., Rosenow, P., Tonner, R.: A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga(C2H5)3) and tert-butylphosphine (TBP, PH2(t-C4H9)) under MOVPE conditions. Phys. Chem. Chem. Phys. 16(32), 17018 (2014)CrossRefGoogle Scholar
  26. 26.
    Stegmüller, A., Tonner, R.: The beta-hydrogen elimination mechanism in absence of acceptor orbitals in EH2(t-C4H9) (E = N-Bi). Inorg. Chem. 54(13), 6363 (2015)CrossRefGoogle Scholar
  27. 27.
    Stegmüller, A., Tonner, R.: A quantum-chemical descriptor for CVD precursor design: predicting decomposition rates of TBP and TBAs isomers and derivatives. Chem. Vap. Deposition, 21, 161–165 (2015). doi:10.1002/cvde.201504332CrossRefGoogle Scholar
  28. 28.
    Beyer, A., Oelerich, J.O., Jandieri, K., Werner, K., Stolz, W., Baranovskii, S.D.: Tonner, R., Volz, K.: Pyramidal Structure Formation at the Interface between III/V Semiconductors and Silicon (2015, submitted)Google Scholar
  29. 29.
    Koukourakis, N., Buckers, C., Funke, D.A., Gerhardt, N.C., Liebich, S., Chatterjee, S., Lange, C., Zimprich, M., Volz, K., Stolz, W., Kunert, B., Koch, S.W., Hofmann, M.R.: High room-temperature optical gain in ga(nasp)/si heterostructures. Appl. Phys. Lett. 100, 092107 (2012)CrossRefGoogle Scholar
  30. 30.
    Kim, Y.S., Marsman, M., Kresse, G., Tran, F., Blaha, P.: Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors. Phys. Rev. B 82(20), 205212 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Phil Rosenow
    • 1
  • Andreas Stegmüller
    • 1
  • Josua Pecher
    • 1
  • Ralf Tonner
    • 1
    Email author
  1. 1.Philipps-Universität MarburgFachbereich Chemie, Hans-Meerwein-StraßeMarburgGermany

Personalised recommendations