Skip to main content

Directional Fluorescence Based on Surface Plasmon-Coupling

  • Chapter
  • First Online:
Reviews in Fluorescence 2015

Part of the book series: Reviews in Fluorescence ((RFLU,volume 8))

Abstract

Fluorescence technology, including the optical sensing and microscopic imaging, has been playing important roles in biology research and medical diagnosis. However it still remains a great challenge to meet the increasing needs of sensitivity and applicability. Surface plasmon-coupled emission (SPCE) is a novel technique that can significantly improve the ability of fluorescence technology. In SPCE, the excited fluorophores will couple with surface plasmons on a continuous thin metal film, which in turn radiate into the higher refractive index media with a narrow angular distribution. Attributed to the direction emission, the sensitivity can be highly improved with the high collection efficiency. This review will summarize the unique features of SPCE that are important in analytical researches, in particular, with a focus on the recent advancements in the strategies for improving the SPCE performance. The optical imaging based on SPCE and some examples of the analytical applications of SPCE are also highlighted. Recent achievements in SPCE suggest that it could provide new technical platforms with widespread potential applications in various areas, such as nucleic acid, protein and other biochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR, Malicka J, Gryczynski I, Gryczynski Z (2003) Directional surface plasmon-coupled emission: a new method for high sensitivity detection. Biochem Biophys Res Commun 307:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Directional surface plasmon coupled emission. J Fluoresc 14:119–123

    Article  CAS  PubMed  Google Scholar 

  4. Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal Biochem 324:170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neumann T, Johansson ML, Kambhampati D, Knoll W (2002) Surface-plasmon fluorescence spectroscopy. Adv Funct Mater 12:575–586

    Article  CAS  Google Scholar 

  7. Joanna Malicka IG, Gryczynski Z, Lakowicz JR (2004) Use of surface plasmon-coupled emission to measure DNA hybridization. J Biomol Screen 9:208–215

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smith DS, Kostov Y, Rao G, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2005) First observation of surface plasmon-coupled emission due to LED excitation. J Fluoresc 15:895–900

    Article  CAS  PubMed  Google Scholar 

  9. Cao SH, Xie TT, Cai WP, Li YQ (2009) Observation of surface plasmon-coupled directional emission at a fixed angle using thin iron films. The 13th Beijing conference and exhibition on instrumental analysis (BCEIA 2009), C52

    Google Scholar 

  10. Smith DS, Kostov Y, Rao G (2008) Signal enhancement of surface plasmon-coupled directional emission by a conical mirror. Appl Opt 47:5229–5234

    Article  PubMed  Google Scholar 

  11. Li YQ, Xie TT, Cai WP (2009) Surface plasmon coupled fluorescence detection device. Patent. CN ZL200910111882.8

    Google Scholar 

  12. Hung YJ, Smolyaninov II, Davis CC, Wu HC (2006) Fluorescence enhancement by surface gratings. Opt Express 14:10825–10830

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury MH, Malyn SN, Aslan K, Lakowicz JR, Geddes CD (2007) First observation of surface plasmon-coupled chemiluminescence (SPCC). Chem Phys Lett 435:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Gryczynski Z, Lakowicz JR (2004) First observation of surface plasmon-coupled electrochemiluminescence. Chem Phys Lett 393:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Previte MJR, Aslan K, Zhang YX, Geddes CD (2006) Surface plasmon coupled phosphorescence (SPCP). Chem Phys Lett 432:610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gryczynski I, Malicka J, Lakowicz JR, Goldys EM, Calander N, Gryczynski Z (2005) Directional two-photon induced surface plasmon-coupled emission. Thin Solid Films 491:173–176

    Article  CAS  Google Scholar 

  17. Mondal PP, Gilbert RJ, So PTC (2008) Plasmon enhanced fluorescence microscopy below quantum noise limit with reduced photobleaching effect. Appl Phys Lett 93:093901

    Article  Google Scholar 

  18. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Surface plasmon-coupled emission with gold films. J Phys Chem B 108:12568–12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao SH, Xie TT, Cai WP, Li YQ (2010) Observation of surface plasmon-coupled directional fluorescence using thin iron films. Chem J Chin Univ 31:61–63

    CAS  Google Scholar 

  20. Calander N (2004) Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Anal Chem 76:2168–2173

    Article  CAS  PubMed  Google Scholar 

  21. Hiep HM, Fujii M, Hayashi S (2007) Effects of molecular orientation on surface-plasmon-coupled emission patterns. Appl Phys Lett 91:183110

    Article  Google Scholar 

  22. Penninck L, Mladenowski S, Neyts K (2010) The effects of planar metallic interfaces on the radiation of nearby electrical dipoles. J Opt 12:075001

    Article  Google Scholar 

  23. Gryczynski I, Malicka J, Nowaczyk K, Gryczynski Z, Lakowicz JR (2004) Effects of sample thickness on the optical properties of surface plasmon-coupled emission. J Phys Chem B 108:12073–12083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gryczynski I, Malicka J, Nowaczyk K, Gryczynski Z, Lakowicz JR (2006) Waveguide-modulated surface plasmon-coupled emission of Nile blue in poly(vinyl alcohol) thin films. Thin Solid Films 510:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salamon Z, Macleod HA, Tollin G (1997) Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophys J 73:2791–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salamon Z, Tollin G (2001) Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophys J 80:1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Calander N (2005) Surface plasmon-coupled emission and Fabry-Perot resonance in the sample layer: a theoretical approach. J Phys Chem B 109:13957–13963

    Article  CAS  PubMed  Google Scholar 

  28. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699

    Article  CAS  Google Scholar 

  29. Hellen EH, Axelrod D (1987) Fluorescence emission at dielectric and metal-film interfaces. J Opt Soc Am B 4:337–350

    Article  CAS  Google Scholar 

  30. Weber WH, Eagen CF (1979) Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Opt Lett 4:236–238

    Article  CAS  PubMed  Google Scholar 

  31. Ford GW, Weber WH (1984) Electromagnetic interactions of molecules with metal surfaces. Phys Rep 113:195–287

    Article  CAS  Google Scholar 

  32. Ray K, Szmacinski H, Enderlein J, Lakowicz JR (2007) Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films. Appl Phys Lett 90:251116

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang YK, Yang TY, Pourmand M, Miller JJ, Tuominen MT, Achermann M (2010) Time-resolved surface plasmon polariton coupled exciton and biexciton emission. Opt Express 18:15560–15568

    Article  CAS  PubMed  Google Scholar 

  34. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  35. Sun YG, Xia YN (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128:686–691

    Article  CAS  PubMed  Google Scholar 

  36. Tian ZQ, Ren B, Li JF, Yang ZL (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 43:3514–3534

    Article  Google Scholar 

  37. Aslan K, Geddes CD (2009) Directional surface plasmon coupled luminescence for analytical sensing applications: which metal, what wavelength, what observation angle? Anal Chem 81:6913–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Previte MJR, Zhang YX, Aslan K, Geddes CD (2007) Surface plasmon coupled fluorescence from copper substrates. Appl Phys Lett 91:151902

    Article  Google Scholar 

  39. Gryczynski I, Malicka J, Gryczynski Z, Nowaczyk K, Lakowicz JR (2004) Ultraviolet surface plasmon-coupled emission using thin aluminum films. Anal Chem 76:4076–4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asian K, Previte MJR, Zhang YX, Geddes CD (2008) Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films. Anal Chem 80:7304–7312

    Article  Google Scholar 

  41. Aslan K, Geddes CD (2009) Surface plasmon coupled chemiluminescence from zinc substrates: directional chemiluminescence. Appl Phys Lett 94:073104

    Article  Google Scholar 

  42. Aslan K, Weisenberg M, Hortle E, Geddes CD (2009) Surface plasmon coupled chemiluminescence from iron thin films: directional and approaching fixed angle observation. J Appl Phys 106:014131

    Article  Google Scholar 

  43. Aslan K, Zhang YX, Geddes CD (2009) Directional, broad, and fixed angle surface plasmon coupled fluorescence from iron thin films. J Phys Chem C 113:20535–20538

    Article  CAS  Google Scholar 

  44. Aslan K, Zhang YX, Geddes CD (2009) Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays. Anal Chem 81:3801–3808

    Article  CAS  PubMed  Google Scholar 

  45. Ray K, Chowdhury MH, Lakowicz JR (2008) Observation of surface plasmon-coupled emission using thin platinum films. Chem Phys Lett 465:92–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aslan K, Weisenberg M, Hortle E, Geddes CD (2009) Fixed-angle observation of surface plasmon coupled chemiluminescence from palladium thin films. Appl Phys Lett 95:123117

    Article  Google Scholar 

  47. Weisenberg M, Aslan K, Hortle E, Geddes CD (2009) Directional surface plasmon coupled chemiluminescence from nickel thin films: fixed angle observation. Chem Phys Lett 473:120–125

    Article  CAS  Google Scholar 

  48. Aslan K, Malyn SN, Geddes CD (2007) Microwave-accelerated surface plasmon-coupled directional luminescence: application to fast and sensitive assays in buffer, human serum and whole blood. J Immunol Methods 323:55–64

    Article  CAS  PubMed  Google Scholar 

  49. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77:8057–8067

    Article  CAS  PubMed  Google Scholar 

  50. Aslan K, Previte MJR, Zhang Y, Geddes CD (2008) Microwave-accelerated surface plasmon-coupled directional luminescence 2: a platform technology for ultra fast and sensitive target DNA detection in whole blood. J Immunol Methods 331:103–113

    Article  CAS  PubMed  Google Scholar 

  51. Previte MJR, Geddes CD (2007) Microwave-triggered surface plasmon coupled chemiluminescence. J Am Chem Soc 129:9850–9851

    Article  CAS  PubMed  Google Scholar 

  52. Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Previte MJR, Aslan K, Zhang YX, Geddes CD (2007) Metal-enhanced surface plasmon-coupled phosphorescence. J Phys Chem C 111:6051–6059

    Article  CAS  Google Scholar 

  54. Chowdhury MH, Ray K, Geddes CD, Lakowicz JR (2008) Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chem Phys Lett 452:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aslan K, McDonald K, Previte MJR, Zhang YX, Geddes CD (2008) Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films. Chem Phys Lett 464:216–219

    Article  CAS  Google Scholar 

  56. Cao SH, Xie TT, Cai WP, Liu Q, Li YQ (2011) Electric field assisted surface plasmon-coupled directional emission: an active strategy on enhancing sensitivity for DNA sensing and efficient discrimination of single base mutation. J Am Chem Soc 133:1787–1789

    Article  CAS  PubMed  Google Scholar 

  57. Stefani FD, Vasilev K, Bocchio N, Stoyanova N, Kreiter M (2005) Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys Rev Lett 94

    Google Scholar 

  58. Gryczynski Z, Borejdo J, Calander N, Matveeva EG, Gryczynski I (2006) Minimization of detection volume by surface-plasmon-coupled emission. Anal Biochem 356:125–131

    Article  CAS  PubMed  Google Scholar 

  59. Mettikolla P, Calander N, Luchowski R, Gryczynski I, Gryczynski Z, Borejdo J (2010) Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence. J Biomed Opt 15:017011

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chung E, Kim YH, Tang WT, Sheppard CJR, So PTC (2009) Wide-field extended-resolution fluorescence microscopy with standing surface-plasmon-resonance waves. Opt Lett 34:2366–2368

    Article  PubMed  Google Scholar 

  61. Zhang DG, Yuan XC, Bouhelier A (2010) Direct image of surface-plasmon-coupled emission by leakage radiation microscopy. Appl Opt 49:875–879

    Article  CAS  PubMed  Google Scholar 

  62. Zhang DG, Moh KJ, Yuan XC (2010) Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules. Opt Express 18:12185–12190

    Article  CAS  PubMed  Google Scholar 

  63. Yuk JS, Trnavsky M, McDonagh C, MacCraith BD (2010) Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosens Bioelectron 25:1344–1349

    Article  CAS  PubMed  Google Scholar 

  64. Yuk JS, MacCraith BD, McDonagh C (2011) Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip. Biosens Bioelectron 26:3213–3218

    Article  CAS  PubMed  Google Scholar 

  65. Tang WT, Chung E, Kim YH, So PTC, Sheppard CJR (2007) Investigation of the point spread function of surface plasmon-coupled emission microscopy. Opt Express 15:4634–4646

    Article  PubMed  Google Scholar 

  66. Tang WT, Chung E, Kim YH, So PTC, Sheppard CJR (2010) Surface-plasmon-coupled emission microscopy with a spiral phase plate. Opt Lett 35:517–519

    Article  PubMed  Google Scholar 

  67. Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I (2006) Application of surface plasmon coupled emission to study of muscle. Biophys J 91:2626–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Borejdo J, Calander N, Gryczynski Z, Gryczynski I (2006) Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope. Opt Express 14:7878–7888

    Article  CAS  PubMed  Google Scholar 

  69. Kuo-Chih Chiu C-YL, Dong CY, Chen S-J (2011) Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging. Opt Express 19:5386–5396

    Article  PubMed  Google Scholar 

  70. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) DNA hybridization using surface plasmon-coupled emission. Anal Chem 75:6629–6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  72. Xie TT, Liu Q, Cai WP, Chen Z, Li YQ (2009) Surface plasmon-coupled directional emission based on a conformational-switching signaling aptamer. Chem Commun 45:3190–3192

    Article  Google Scholar 

  73. Lakowicz JR, Malicka J, Matveeva E, Gryczynski I, Gryczynski Z (2005) Plasmonic technology: novel approach to ultrasensitive immunoassays. Clin Chem 51:1914–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matveeva E, Gryczynski Z, Gryczynski I, Lakowicz JR (2004) Immunoassays based on directional surface plasmon-coupled emission. J Immunol Methods 286:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matveeva E, Gryczynski Z, Gryczynski I, Malicka J, Lakowicz JR (2004) Myoglobin immunoassay utilizing directional surface plasmon-coupled emission. Anal Chem 76:6287–6292

    Article  CAS  PubMed  Google Scholar 

  76. Yuk JS, McDonagh C, MacCraith BD (2010) Demonstration of a surface plasmon-coupled emission (SPCE)-based immunoassay in the absence of a spacer layer. Anal Bioanal Chem 398:1947–1954

    Article  CAS  PubMed  Google Scholar 

  77. Matveeva EG, Gryczynski I, Barnett A, Calander N, Gryczynski Z (2007) Red blood cells do not attenuate the SPCE fluorescence in surface assays. Anal Bioanal Chem 388:1127–1135

    Article  CAS  PubMed  Google Scholar 

  78. Matveeva E, Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2004) Multi-wavelength immunoassays using surface plasmon-coupled emission. Biochem Biophys Res Commun 313:721–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys Chem B 109:1088–1093

    Article  CAS  PubMed  Google Scholar 

  80. Kostov Y, Smith DS, Tolosa L, Rao G, Gryczynski I, Gryczynski Z, Malicka J, Lakowicz JR (2005) Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer. Biotechnol Prog 21:1731–1735

    Article  CAS  PubMed  Google Scholar 

  81. Sathish S, Kostov Y, Rao G (2009) High-resolution surface plasmon coupled resonant filter for monitoring of fluorescence emission from molecular multiplexes. Appl Phys Lett 94:223113

    Article  Google Scholar 

  82. Sathish RS, Kostov Y, Rao G (2009) Spectral resolution of molecular ensembles under ambient conditions using surface plasmon coupled fluorescence emission. Appl Opt 48:5348–5353

    Article  CAS  PubMed  Google Scholar 

  83. Szmacinski H, Ray K, Lakowicz JR (2009) Effect of plasmonic nanostructures and nanofilms on fluorescence resonance energy transfer. J Biophoto 2:243–252

    Article  CAS  Google Scholar 

  84. Jankowski D, Bojarski P, Kwiek P, Rangelowa-Jankowska S (2010) Donor-acceptor nonradiative energy transfer mediated by surface plasmons on ultrathin metallic films. Chem Phys 373:238–242

    Article  CAS  Google Scholar 

  85. Frischeisen J, Yokoyama D, Adachi C, Brutting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96:073302

    Article  Google Scholar 

  86. Ghazali FAM, Fujii M, Hayashi S (2009) Anisotropic propagation of surface plasmon polaritons caused by oriented molecular overlayer. Appl Phys Lett 95:033303

    Article  Google Scholar 

  87. Smith DS, Kostov Y, Rao G (2007) SPCE-based sensors: ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sens Actuators B 127:432–440

    Article  CAS  Google Scholar 

  88. Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806

    Article  CAS  PubMed  Google Scholar 

  89. Meyer SA, Le Ru EC, Etchegoin PG (2011) Combining Surface Plasmon Resonance (SPR) Spectroscopy with Surface-Enhanced Raman Scattering (SERS). Anal Chem 83:2337–2344

    Article  CAS  PubMed  Google Scholar 

  90. Ahamed JU, Sanbongi T, Katano S, Uehara Y (2010) Prism-coupled scanning tunneling microscope light emission spectroscopy of Au film covered with self-assembled alkanethiol monolayer. Jpn J Appl Phys 49:08LB09

    Article  Google Scholar 

  91. Fort E, Gresillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41:013001

    Article  Google Scholar 

  92. Cai WP, Liu Q, Cao SH, Weng YH, Liu XQ, Li YQ (2012) Prism-based surface plasmon coupled emission imaging. ChemPhysChem 13: 3848-3851

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the fund supports from the NSFC (21375111, 21127005, 20975084), the 973 Program of China (2013CB933703, 2007CB935600) and the Ministry of Education of China (20110121110011, PCSIRTIRT13036). We thank Dr. Yu-Luan Chen for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Qun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, YQ., Cao, SH., Cai, WP., Liu, Q., Liu, XQ., Weng, YH. (2016). Directional Fluorescence Based on Surface Plasmon-Coupling. In: Geddes, C. (eds) Reviews in Fluorescence 2015. Reviews in Fluorescence, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-24609-3_3

Download citation

Publish with us

Policies and ethics