Skip to main content

Luminescent Lanthanide Sensors and Lanthanide Doped Upconversion Nanoparticles: Current Status and Future Expectations

  • Chapter
  • First Online:
Reviews in Fluorescence 2015

Part of the book series: Reviews in Fluorescence ((RFLU,volume 8))

  • 1075 Accesses

Abstract

Lanthanide ions exhibit fascinating optical properties with their potential applications largely governed by their interaction with light. This chapter deals with some relevant aspects concerning the electronic and coordination properties of lanthanides and the basic principles related to the design of efficient luminescent lanthanide complexes. The cleverly designed environment consisting of ligands containing adequate chromophoric groups provide a rigid and protective coordination shell to minimize non-radiative deactivation. Lanthanide doped upconversion nanoparticles (UCNPs) have attracted extensive attention in the field of biomedical applications due to their long luminescence lifetime, narrow emission bandwidth, high quantum yields and low toxicity. In this chapter the upconversion phenomenon is explained with emphasis on the mechanism of upconversion, selection of host materials and impurities in host matrices. The various chemical approaches for the synthesis of lanthanide doped UCNPs have also been discussed. Subsequently, some selected results of our recent work concerning the photoluminescence studies of Eu(III) and Yb (III) complexes are reported which exhibit the characteristic emission bands of Eu(III) ion corresponding to 5Do → 7FJ (J = 0–4) transitions with intense red emission at 615 nm due to 5D0 → 7F2 transition of the central Eu(III) ion. These complexes show long radiative lifetime and quantum efficiency which suggest that these complexes can be well utilized as fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Bernardo P, Melchior A, Tolazzi M, Zanonato PL (2012) Thermodynamics of lanthanide(III) complexation in non-aqueous solvents. Coord Chem Rev 256(1–2):328–351

    Article  CAS  Google Scholar 

  2. Bünzli J-CG, Chauvin A-S, Kim HK, Deiters E, Eliseeva SV (2010) Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: role of the radiative lifetime. Coord Chem Rev 254(21–22):2623–2633

    Article  CAS  Google Scholar 

  3. Li H-Y, Wu J, Huang W, Zhou Y-H, Li H-R, Zheng Y-X, Zuo J-L (2009) Synthesis and photoluminescent properties of five homodinuclear lanthanide (Ln3+=Eu3+, Sm3+, Er3+, Yb3+, Pr3+) complexes. J Photochem Photobiol A 208(2–3):110–116

    Article  CAS  Google Scholar 

  4. Sengar RS, Nigam A, Geib SJ, Wiener EC (2009) Syntheses and crystal structures of gadolinium and europium complexes of AAZTA analogues. Polyhedron 28(8):1525–1531

    Article  CAS  Google Scholar 

  5. Pietraszkiewicz O, Pietraszkiewicz M, Karpiuk J, Jesień M (2009) Eu(III) complexes involving 1,3,5-triazine diphosphine oxides. J Rare Earths 27(4):584–587

    Article  Google Scholar 

  6. Vicentini G, Zinner LB, Zukerman-Schpector J, Zinner K (2000) Luminescence and structure of europium compounds. Coord Chem Rev 196(1):353–382

    Article  CAS  Google Scholar 

  7. Eliseeva SV, Bunzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227

    Article  CAS  PubMed  Google Scholar 

  8. Montgomery CP, Murray BS, New EJ, Pal R, Parker D (2009) Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc Chem Res 42(7):925–937

    Article  CAS  PubMed  Google Scholar 

  9. Tsukube H, Shinoda S (2002) Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem Rev 102(6):2389–2404

    Article  CAS  PubMed  Google Scholar 

  10. Pandya S, Yu J, Parker D (2006) Engineering emissive europium and terbium complexes for molecular imaging and sensing. Dalton Trans 23:2757–2766

    Article  CAS  Google Scholar 

  11. Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39(10):3936–3953

    Article  CAS  PubMed  Google Scholar 

  12. dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev 252(23–24):2512–2527

    Article  CAS  Google Scholar 

  13. Shinoda S, Tsukube H (2011) Luminescent lanthanide complexes as analytical tools in anion sensing, pH indication and protein recognition. Analyst 136(3):431–435

    Article  CAS  PubMed  Google Scholar 

  14. Tsukube H, Yano K, Shinoda S (2009) Near-infrared luminescence sensing of glutamic acid, aspartic acid, and their dipeptides with tris(β-diketonato)lanthanide probes. Helv Chim Acta 92(11):2488–2496

    Article  CAS  Google Scholar 

  15. Bünzli J-CG (2006) Benefiting from the unique properties of lanthanide ions. Acc Chem Res 39(1):53–61

    Article  PubMed  CAS  Google Scholar 

  16. Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250(15–16):2093–2126

    Article  CAS  Google Scholar 

  17. Yongliang Z, Fengying Z, Qiang L, Deqing G (2006) Synthesis, characterization and fluorescence properties of europium, terbium complexes with biphenyl-4-carboxylic acid and o-phenanthroline. J. Rare Earths 24(1, Supplement 1):18–22

    Google Scholar 

  18. Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077

    Article  PubMed  CAS  Google Scholar 

  19. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102(6):2357–2368

    Article  CAS  PubMed  Google Scholar 

  20. Faulkner S, Pope SJA, Burton-Pye BP (2005) Lanthanide complexes for luminescence imaging applications. Appl Spectrosc Rev 40(1):1–31

    Article  CAS  Google Scholar 

  21. Whan RE, Crosby GA (1962) Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc 8(1–6):315–327

    Article  CAS  Google Scholar 

  22. Crosby GA, Whan RE, Alire RM (1961) Intramolecular energy transfer in rare earth chelates. Role of the triplet state. J Chem Phys 34(3):743–748

    Article  CAS  Google Scholar 

  23. Martell AE, Hancock RD, Motekaitis RJ (1994) Factors affecting stabilities of chelate, macrocyclic and macrobicyclic complexes in solution. Coord Chem Rev 133:39–65

    Article  CAS  Google Scholar 

  24. Bünzli J-CG, Piguet C (2002) Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem Rev 102(6):1897–1928

    Article  PubMed  CAS  Google Scholar 

  25. Piguet C, Bunzli J-CG (1999) Mono- and polymetallic lanthanide-containing functional assemblies: a field between tradition and novelty. Chem Soc Rev 28(6):347–358

    Article  CAS  Google Scholar 

  26. Kuriki K, Koike Y, Okamoto Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102(6):2347–2356

    Article  CAS  PubMed  Google Scholar 

  27. Yanagida S, Hasegawa Y, Murakoshi K, Wada Y, Nakashima N, Yamanaka T (1998) Strategies for enhancing photoluminescence of Nd3+ in liquid media. Coord Chem Rev 171:461–480

    Article  CAS  Google Scholar 

  28. Hasegawa Y, Wada Y, Yanagida S (2004) Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J Photochem Photobiol C 5(3):183–202

    Article  CAS  Google Scholar 

  29. Sivakumar S, van Veggel FCJM, Raudsepp M (2005) Bright white light through Up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+−doped LaF3 nanoparticles. J Am Chem Soc 127(36):12464–12465

    Article  CAS  PubMed  Google Scholar 

  30. Werts MHV, Jukes RTF, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys 4(9):1542–1548

    Article  CAS  Google Scholar 

  31. Tamaki S, Hasegawa Y, Yajima H (2013) Factors influencing the luminescence intensity of europium(III) complexes prepared via synergistic extraction. Talanta 105:262–266

    Article  CAS  PubMed  Google Scholar 

  32. Pandya S, Yu J, Parker D (2006) Engineering emissive europium and terbium complexes for molecular imaging and sensing. Dalton Trans 23:2757–2766

    Article  CAS  Google Scholar 

  33. Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2(1):31–38

    Article  CAS  PubMed  Google Scholar 

  34. Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7(1):47–57

    Article  CAS  PubMed  Google Scholar 

  35. Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. Rev Mol Biotechnol 82(3):233–250

    Article  CAS  Google Scholar 

  36. Shiraishi Y, Furubayashi Y, Nishimura G, Hirai T (2007) Sensitized luminescence properties of dinuclear lanthanide macrocyclic complexes bearing a benzophenone antenna. J Lumin 127(2):623–632

    Article  CAS  Google Scholar 

  37. Werts MHV, Woudenberg RH, Emmerink PG, van Gassel R, Hofstraat JW, Verhoeven JW (2000) A near-infrared luminescent label based on YbIII ions and its application in a fluoroimmunoassay. Angew Chem Int Ed 39(24):4542–4544

    Article  CAS  Google Scholar 

  38. Zhang J, Badger PD, Geib SJ, Petoud S (2005) Sensitization of near-infrared-emitting lanthanide cations in solution by tropolonate ligands. Angew Chem Int Ed 44(17):2508–2512

    Article  CAS  Google Scholar 

  39. Comby S, Gumy F, Bünzli J-CG, Saraidarov T, Reisfeld R (2006) Luminescent properties of an Yb podate in sol–gel silica films, solution, and solid state. Chem Phys Lett 432(1–3):128–132

    Article  CAS  Google Scholar 

  40. Comby S, Imbert D, Vandevyver C, Bünzli J-CG (2007) A novel strategy for the design of 8-hydroxyquinolinate-based lanthanide bioprobes that emit in the near infrared range. Chem Eur J 13(3):936–944

    Article  CAS  PubMed  Google Scholar 

  41. Bassett AP, Van Deun R, Nockemann P, Glover PB, Kariuki BM, Van Hecke K, Van Meervelt L, Pikramenou Z (2005) Long-lived near-infrared luminescent lanthanide complexes of imidodiphosphinate “shell” ligands. Inorg Chem 44(18):6140–6142

    Article  CAS  PubMed  Google Scholar 

  42. Imbert D, Cantuel M, Bünzli J-CG, Bernardinelli G, Piguet C (2003) Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(III) sensitization in discrete bimetallic edifices. J Am Chem Soc 125(51):15698–15699

    Article  CAS  PubMed  Google Scholar 

  43. Torelli S, Imbert D, Cantuel M, Bernardinelli G, Delahaye S, Hauser A, Bünzli J-CG, Piguet C (2005) Tuning the decay time of lanthanide-based near infrared luminescence from micro- to milliseconds through d→f energy transfer in discrete heterobimetallic complexes. Chem Eur J 11(11):3228–3242

    Article  CAS  PubMed  Google Scholar 

  44. Picot A, Malvolti F, Le Guennic B, Baldeck PL, Williams JAG, Andraud C, Maury O (2007) Two-photon antenna effect induced in octupolar europium complexes. Inorg Chem 46(7):2659–2665

    Article  CAS  PubMed  Google Scholar 

  45. Fu L-M, Wen X-F, Ai X-C, Sun Y, Wu Y-S, Zhang J-P, Wang Y (2005) Efficient two-photon-sensitized luminescence of a europium(III) complex. Angew Chem Int Ed 44(5):747–750

    Article  CAS  Google Scholar 

  46. Manning HC, Goebel T, Thompson RC, Price RR, Lee H, Bornhop DJ (2004) Targeted molecular imaging agents for cellular-scale bimodal imaging. Bioconjug Chem 15(6):1488–1495

    Article  CAS  PubMed  Google Scholar 

  47. Alzakhem N, Bischof C, Seitz M (2012) Dependence of the photophysical properties on the number of 2,2′-bipyridine units in a series of luminescent europium and terbium cryptates. Inorg Chem 51(17):9343–9349

    Article  CAS  PubMed  Google Scholar 

  48. Bornhop DJ, Hubbard DS, Houlne MP, Adair C, Kiefer GE, Pence BC, Morgan DL (1999) Fluorescent tissue site-selective lanthanide chelate, Tb-PCTMB for enhanced imaging of cancer. Anal Chem 71(14):2607–2615

    Article  CAS  PubMed  Google Scholar 

  49. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2003) Selective detection of zinc ions with novel luminescent lanthanide probes. Angew Chem Int Ed 42(26):2996–2999

    Article  CAS  Google Scholar 

  50. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) Development of a zinc Ion-selective luminescent lanthanide chemosensor for biological applications. J Am Chem Soc 126(39):12470–12476

    Article  CAS  PubMed  Google Scholar 

  51. Parker D (2000) Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord Chem Rev 205(1):109–130

    Article  CAS  Google Scholar 

  52. Pal R, Parker D (2007) A single component ratiometric pH probe with long wavelength excitation of europium emission. Chem Commun 5:474–476

    Article  Google Scholar 

  53. Song B, Wang G, Tan M, Yuan J (2006) A europium(III) complex as an efficient singlet oxygen luminescence probe. J Am Chem Soc 128(41):13442–13450

    Article  CAS  PubMed  Google Scholar 

  54. Bencini A, Lippolis V (2010) 1,10-phenanthroline: a versatile building block for the construction of ligands for various purposes. Coord Chem Rev 254(17–18):2096–2180

    Article  CAS  Google Scholar 

  55. Stan CS, Rosca I, Sutiman D, Secula MS (2012) Highly luminescent europium and terbium complexes based on succinimide and N-hydroxysuccinimide. J Rare Earths 30(5):401–407

    Article  CAS  Google Scholar 

  56. Pérez-Mayoral E, Soler-Padrós J, Negri V, Cerdán S, Ballesteros P (2007) Synthetic approaches to heterocyclic ligands for Gd-based MRI contrast agents. Molecules 12(8):1771–1795

    Article  PubMed  Google Scholar 

  57. Strasser A, Vogler A (2004) Phosphorescence of gadolinium(III) chelates under ambient conditions. Inorg Chim Acta 357(8):2345–2348

    Article  CAS  Google Scholar 

  58. Yuan W, Cui Y, Shi R, Tao D, Wang Y, Zhang W, Chen J, Sun L, Liu S, Xu Y (2011) Study on fluorescence properties of rare earth complexes influenced by steric effect. J Rare Earths 29(11):1013–1017

    Article  CAS  Google Scholar 

  59. Wang Q-M, Yan B (2004) From molecules to materials: a new way to construct luminescent chemical bonded hybrid systems based with ternary lanthanide complexes of 1,10-phenanthroline. Inorg Chem Commun 7(10):1124–1127

    Article  CAS  Google Scholar 

  60. Wang D, Pi Y, Zheng C, Fan L, Hu Y, Wei X (2013) Preparation and photoluminescence of some europium (III) ternary complexes with β-diketone and nitrogen heterocyclic ligands. J Alloys Compd 574:54–58

    Article  CAS  Google Scholar 

  61. Sharma G, Narula AK (2015) Synthesis of Eu(III) complexes with 2-aminopyridine and 1,10-phenanthroline: structural, optical, thermal and morphological studies. Sens Actuators B Chem 215:584–591

    Article  CAS  Google Scholar 

  62. Lin M, Wang X, Tang Q, Ling Q (2013) Luminescence properties of polymers containing europium complexes with 4-tert-butylbenzoic acid. J Rare Earths 31(10):950–956

    Article  CAS  Google Scholar 

  63. Zhuravlev KP, Tsaryuk VI, Pekareva IS, Sokolnicki J, Klemenkova ZS (2011) Europium and terbium ortho-, meta-, and para-methoxybenzoates: structural peculiarities, luminescence, and energy transfer. J Photochem Photobiol A 219(1):139–147

    Article  CAS  Google Scholar 

  64. Räsänen M, Takalo H, Rosenberg J, Mäkelä J, Haapakka K, Kankare J (2014) Study on photophysical properties of Eu(III) complexes with aromatic β-diketones – role of charge transfer states in the energy migration. J Lumin 146:211–217

    Article  CAS  Google Scholar 

  65. Lahoud MG, Marques LF, da Silva PB, de Jesus CAS, da Silva CCP, Ellena J, Freitas RS, Davolos MR, Frem RCG (2013) Synthesis, crystal structure and photoluminescence of a binuclear complex of europium(III) containing 3,5-dicarboxypyrazolate and succinate. Polyhedron 54:1–7

    Article  CAS  Google Scholar 

  66. Zucchi G, Maury O, Thuéry P, Ephritikhine M (2008) Structural diversity in neodymium bipyrimidine compounds with near infrared luminescence: from mono- and binuclear complexes to metal-organic frameworks. Inorg Chem 47(22):10398–10406

    Article  CAS  PubMed  Google Scholar 

  67. Armelao L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M, Tondello E (2010) Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord Chem Rev 254(5–6):487–505

    Article  CAS  Google Scholar 

  68. de Sá GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA, da Silva Jr EF (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196(1):165–195

    Article  Google Scholar 

  69. Azab HA, Duerkop A, Anwar ZM, Hussein BHM, Rizk MA, Amin T (2013) Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)–pyridine-2,6-dicarboxylic acid probe. Anal Chim Acta 759:81–91

    Article  CAS  PubMed  Google Scholar 

  70. Zheng H, Gao D, Fu Z, Wang E, Lei Y, Tuan Y, Cui M (2011) Fluorescence enhancement of Ln3+ doped nanoparticles. J Lumin 131(3):423–428

    Article  CAS  Google Scholar 

  71. Zhang L, An Y, Ahmad W, Zhou Y, Shi Z, Zheng X (2013) A new quaternary luminescence enhancement system of Eu–N-(3-methoxysalicylidene)-2-aminopyridine–1,10-phenanthroline–Zn and its application in determining trace amounts of Eu3+ and Zn2+. J Photochem Photobiol A 252:167–173

    Article  CAS  Google Scholar 

  72. Sharma G, Narula A (2015) Synthesis and optoelectronic properties of three Eu(III)-dipicolinate complexes based on α-picolinic acid, 2-aminopyridine and 2-hydroxypyridine as secondary ligands. J Mater Sci Mater Electron 26(2):1009–1017

    Article  CAS  Google Scholar 

  73. Yue Q, Yang J, Li G-H, Li G-D, Xu W, Chen J-S, Wang S-N (2005) Three-dimensional 3d–4f heterometallic coordination polymers: synthesis, structures, and magnetic properties. Inorg Chem 44(15):5241–5246

    Article  CAS  PubMed  Google Scholar 

  74. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755

    Article  PubMed  CAS  Google Scholar 

  75. Tsukube H, Shinoda S (2002) Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem Rev 102(6):2389–2404

    Article  CAS  PubMed  Google Scholar 

  76. de Lill DT, de Bettencourt-Dias A, Cahill CL (2007) Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg Chem 46(10):3960–3965

    Article  PubMed  CAS  Google Scholar 

  77. Ma D, Wang W, Li Y, Li J, Daiguebonne C, Calvez G, Guillou O (2010) In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. CrystEngComm 12(12):4372–4377

    Article  CAS  Google Scholar 

  78. Huang J, Xu Y, Chen X, Xu D, Xu Y, He Q (2012) Synthesis, characterization and properties of some rare earth complexes with 2,6-pyridine dicarboxylic acid and α-Picolinic acid. J Rare Earths 30(6):586–591

    Article  CAS  Google Scholar 

  79. Mistri S, Zangrando E, Manna SC (2013) Cu(II) complexes of pyridine-2,6-dicarboxylate and N-donor neutral ligands: synthesis, crystal structure, thermal behavior, DFT calculation and effect of aromatic compounds on their fluorescence. Inorg Chim Acta 405:331–338

    Article  CAS  Google Scholar 

  80. Jose SP, Mohan S (2006) Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline. Spectrochim Acta A Mol Biomol Spectrosc 64(1):240–245

    Article  PubMed  CAS  Google Scholar 

  81. Dwivedi Y, Rai A, Rai SB (2009) Energy transfer in Er:Eu:Yb co-doped tellurite glasses: Yb as enhancer and quencher. J Lumin 129(6):629–633

    Article  CAS  Google Scholar 

  82. Sharma G, Narula A (2015) Eu3+, Yb3+ and Eu3+−Yb3+ complexes with salicylic acid and 1,10-phenanthroline: synthesis, photoluminescent properties and energy transfer. J Fluoresc 25(2):355–360

    Article  CAS  PubMed  Google Scholar 

  83. Łyszczek R, Mazur L (2012) Polynuclear complexes constructed by lanthanides and pyridine-3,5-dicarboxylate ligand: Structures, thermal and luminescent properties. Polyhedron 41(1):7–19

    Article  CAS  Google Scholar 

  84. Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Gareth Williams JA, Woods M (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perkin Trans 2(3):493–504

    Article  Google Scholar 

  85. Dwivedi Y, Thakur SN, Rai SB (2007) Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix. Appl Phys B 89(1):45–51

    Article  CAS  Google Scholar 

  86. Yang CH, Yang GF, Pan YX, Zhang QY (2009) Synthesis and spectroscopic properties of GdAl3(BO3)4 poly-crystals codoped with Yb3+ and Eu3+. J Fluoresc 19(1):105–109

    Article  CAS  PubMed  Google Scholar 

  87. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130(17):5642–5643

    Article  CAS  PubMed  Google Scholar 

  88. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989

    Article  CAS  PubMed  Google Scholar 

  89. Ong LC, Gnanasammandhan MK, Nagarajan S, Zhang Y (2010) Upconversion: road to El Dorado of the fluorescence world. Luminescence 25(4):290–293

    Article  CAS  PubMed  Google Scholar 

  90. Qiu H, Chen G, Sun L, Hao S, Han G, Yang C (2011) Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. J Mater Chem 21(43):17202–17208

    Article  CAS  Google Scholar 

  91. Yin A, Zhang Y, Sun L, Yan C (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale 2(6):953–959

    Article  CAS  PubMed  Google Scholar 

  92. Yi G-S, Chow G-M (2007) Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343

    Article  CAS  Google Scholar 

  93. Liu C, Chen D (2007) Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence. J Mater Chem 17(37):3875–3880

    Article  CAS  Google Scholar 

  94. Wang L, Li Y (2006) Green upconversion nanocrystals for DNA detection. Chem Commun 24:2557–2559

    Article  CAS  Google Scholar 

  95. Qin X, Yokomori T, Ju Y (2007) Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Appl Phys Lett 90(7):073104

    Article  CAS  Google Scholar 

  96. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16(23–24):2102–2105

    Article  CAS  Google Scholar 

  97. Yang J, Zhang C, Peng C, Li C, Wang L, Chai R, Lin J (2009) Controllable Red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. Chem Eur J 15(18):4649–4655

    Article  CAS  PubMed  Google Scholar 

  98. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–174

    Article  CAS  PubMed  Google Scholar 

  99. Xu CT, Svensson N, Axelsson J, Svenmarker P, Somesfalean G, Chen G, Liang H, Liu H, Zhang Z, Andersson-Engels S (2008) Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl Phys Lett 93(17):171103

    Article  CAS  Google Scholar 

  100. Soukka T, Rantanen T, Kuningas K (2008) Photon upconversion in homogeneous fluorescence-based bioanalytical assays. Ann N Y Acad Sci 1130(1):188–200

    Article  CAS  PubMed  Google Scholar 

  101. Li C, Quan Z, Yang P, Huang S, Lian H, Lin J (2008) Shape-controllable synthesis and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. J Phys Chem C 112(35):13395–13404

    Article  CAS  Google Scholar 

  102. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S-T, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem 123(32):7523–7528

    Article  Google Scholar 

  103. León-Luis SF, Rodríguez-Mendoza UR, Haro-González P, Martín IR, Lavín V (2012) Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens Actuators B Chem 174:176–186

    Article  CAS  Google Scholar 

  104. Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 16(18):2324–2329

    Article  CAS  Google Scholar 

  105. Mai H-X, Zhang Y-W, Si R, Yan Z-G, Sun L-d, You L-P, Yan C-H (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128(19):6426–6436

    Article  CAS  PubMed  Google Scholar 

  106. Yi G-S, Chow G-M (2005) Colloidal LaF3:Yb, Er, LaF3:Yb, Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence. J Mater Chem 15(41):4460–4464

    Article  CAS  Google Scholar 

  107. Nabika H, Deki S (2003) Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase. J Phys Chem B 107(35):9161–9164

    Article  CAS  Google Scholar 

  108. Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44(5):322–332

    Article  PubMed  CAS  Google Scholar 

  109. Demas JN, DeGraff BA (2001) Applications of luminescent transition platinum group metal complexes to sensor technology and molecular probes. Coord Chem Rev 211(1):317–351

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Guru Gobind Singh Indraprastha University, New Delhi for providing financial support in the form of Indraprastha research fellowship (IPRF) for research work. Also, the authors are thankful to Ms. Shruti Peshoria for her contribution in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anudeep Kumar Narula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, G., Sehgal, P., Narula, A.K. (2016). Luminescent Lanthanide Sensors and Lanthanide Doped Upconversion Nanoparticles: Current Status and Future Expectations. In: Geddes, C. (eds) Reviews in Fluorescence 2015. Reviews in Fluorescence, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-24609-3_11

Download citation

Publish with us

Policies and ethics