Skip to main content

Fano Resonance in Plasmonic Optical Antennas

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Abstract

This chapter describes an analytical model developed to study the Fano resonance effect in clusters of spherical plasmonic nanoparticles under local excitation. The model depicted the case of a parallel single dipole emitter that was near-field coupled to a pentamer or heptamer cluster of nanospheres. Spatial polarization and field distributions of the optical states and resonance spectra for these cluster configurations were calculated. The directivity calculation was analyzed in order to qualify the redirection of emission. Performances of various nanoantennae were investigated and fully characterized in terms of spatial geometric differences and the Fano resonance effect on plasmonic nanoparticles in the optical domain. Light radiation patterns were found to be significantly affected by nanosphere sizes and positioning of nanospheres with respect to the dipole. A coupling capacitor is calculated as an equivalent component in the proposed circuit model in order to describe the coupling effect between subradiant and superradiant mode in the Fano resonance. The circuit impedances of tetramer, pentamer, and broken symmetry pentamer are simulated, with resultant circuit models in agreement with the calculated results based on S-parameters. The analytical treatment of these modeled nanoantennae yielded results that are applicable to physical design and utilization considerations for clusters in nanoantennae mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  PubMed  Google Scholar 

  2. Ono A, Kato J, Kawata S (2005) Subwavelength optical imaging through a metallic nanorod array. Phys Rev Lett 95:267407

    Article  PubMed  Google Scholar 

  3. Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7:S97–S101

    Article  Google Scholar 

  4. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93:6264–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cesca T, Calvelli P, Battaglin G, Mazzoldi P, Mattei G (2012) Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets. Opt Express 20:4537–4547

    Article  CAS  PubMed  Google Scholar 

  6. Dregely D, Taubert R, Dorfmuller J, Vogelgesang R, Kern K, Giessen H (2011) 3D optical Yagi-Uda nanoantenna array. Nat Commun 2:267

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  8. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Van Dorpe P et al (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4:1664–1670

    Article  CAS  PubMed  Google Scholar 

  9. Christ A, Martin OJF, Ekinci Y, Gippius NA, Tikhodeev SG (2008) Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett 8:2171–2175

    Article  CAS  PubMed  Google Scholar 

  10. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  PubMed  Google Scholar 

  11. Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31:1528–1530

    Article  PubMed  Google Scholar 

  12. Chua SL, Chong Y, Stone AD, Soljacic M, Bravo-Abad J (2011) Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances. Opt Express 19:1539–1562

    Article  CAS  PubMed  Google Scholar 

  13. Samson ZL, MacDonald KF, De Angelis F, Gholipour B, Knight K, Huang CC et al (2010) Metamaterial electro-optic switch of nanoscale thickness. Appl Phys Lett 96:143105

    Article  Google Scholar 

  14. Kim J, Kim J-R, Lee J-O, Park JW, So HM, Kim N et al (2003) Fano resonance in crossed carbon nanotubes. Phys Rev Lett 90:166403

    Article  PubMed  Google Scholar 

  15. Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL (2008) Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 101:253903

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  PubMed  Google Scholar 

  17. Chiam SY, Singh R, Rockstuhl C, Lederer F, Zhang WL, Bettiol AA (2009) Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B 80:153103

    Article  Google Scholar 

  18. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  PubMed  Google Scholar 

  19. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ et al (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685

    Article  CAS  PubMed  Google Scholar 

  20. Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett 12:1058–1062

    Article  CAS  PubMed  Google Scholar 

  21. Abdumalikov AA Jr, Astafiev O, Zagoskin AM, Pashkin YA, Nakamura Y, Tsai JS (2010) Electromagnetically induced transparency on a single artificial atom. Phys Rev Lett 104:193601

    Article  PubMed  Google Scholar 

  22. Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596

    Article  CAS  PubMed  Google Scholar 

  23. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  PubMed  Google Scholar 

  24. Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475–4479

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663

    Article  CAS  PubMed  Google Scholar 

  26. Solis D Jr, Willingham B, Nauert SL, Slaughter LS, Olson J, Swanglap P et al (2012) Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12:1349–1353

    Article  CAS  PubMed  Google Scholar 

  27. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P et al (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189

    Article  CAS  PubMed  Google Scholar 

  28. Frimmer M, Coenen T, Koenderink AF (2012) Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states. Phys Rev Lett 108:077404

    Article  PubMed  Google Scholar 

  29. Rahmani M, Tahmasebi T, Lin Y, Lukiyanchuk B, Liew TY, Hong MH (2011) Influence of plasmon destructive interferences on optical properties of gold planar quadrumers. Nanotechnology 22:245204

    Article  CAS  PubMed  Google Scholar 

  30. Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KGA, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19:4949–4956

    Article  CAS  PubMed  Google Scholar 

  31. Rahmani M, Lukiyanchuk B, Nguyen TTV, Tahmasebi T, Lin Y, Liew TYF et al (2011) Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization. Opt Mater Express 1:1409–1415

    Article  Google Scholar 

  32. Bao K, Mirin NA, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Appl Phys A Mater Sci Process 100:333–339

    Article  CAS  Google Scholar 

  33. Emami SD, Soltanian MRK, Attaran A, Abdul-Rashid HA, Penny R, Moghavvemi M et al (2015) Application of Fano resonance effects in optical antennas formed by regular clusters of nanospheres. Appl Phys A Mater Sci Process 118:139–150

    Article  CAS  Google Scholar 

  34. Bao K, Mirin N, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Appl Phys A 100:333–339

    Article  CAS  Google Scholar 

  35. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  PubMed  Google Scholar 

  36. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, Wang N, Liu Y, Zhao Y, Wu X (2011) Light transmission properties of double-overlapped annular apertures. Opt Lett 36:385–387

    Article  PubMed  Google Scholar 

  38. Singh R, Al-Naib IAI, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19:6312–6319

    Article  PubMed  Google Scholar 

  39. Dong Z-G, Liu H, Xu M-X, Li T, Wang S-M, Cao J-X et al (2010) Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency. Opt Express 18:22412–22417

    Article  CAS  PubMed  Google Scholar 

  40. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P et al (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667

    Article  CAS  PubMed  Google Scholar 

  41. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528

    Article  CAS  PubMed  Google Scholar 

  42. Tuniz A, Lwin R, Argyros A, Fleming SC, Pogson EM, Constable E et al (2011) Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range. Opt Express 19:16480–16490

    Article  CAS  PubMed  Google Scholar 

  43. Attaran A, Emami SD, Soltanian MRK, Penny R, Behbahani F, Harun SW et al (2014) Circuit model of Fano resonance on tetramers, pentamers, and broken symmetry pentamers. Plasmonics 9:1303–1313

    Article  Google Scholar 

  44. Emami SD, Ahmad H, Harun SW, Mirnia SE, Soltanian MRK, Rashid HAA (2012) Fano resonance on plasmonic nanostructures. In: 2012 I.E. 3rd international conference on photonics (ICP), Kuala lumpur. pp 144–148

    Google Scholar 

  45. Litvak AG, Tokman MD (2002) Electromagnetically induced transparency in ensembles of classical oscillators. Phys Rev Lett 88:095003

    Article  CAS  PubMed  Google Scholar 

  46. Joe YS, Satanin AM, Kim CS (2006) Classical analogy of Fano resonances. Phys Scr 74:259–266

    Article  CAS  Google Scholar 

  47. Campione S, Steshenko S, Albani M, Capolino F (2011) Characterization of the optical modes in 3D-periodic arrays of metallic nanospheres. In: General assembly and scientific symposium, 2011 XXXth URSI, Istanbul. pp 1–4

    Google Scholar 

  48. Aden AL, Kerker M (1951) Scattering of electromagnetic waves from two concentric spheres. J Appl Phys 22:1242–1246

    Article  Google Scholar 

  49. Jackson J (1998) Classical electrodynamics, vol 3. Wiley, New York

    Google Scholar 

  50. Stout ADB, Rolly B, Bonod N (2011) Multipole methods for nano-antennas design: applications to Yagi-Uda configurations. J Opt Soc Am B 28:1213–1223

    Article  CAS  Google Scholar 

  51. Evlyukhin A, Reinhardt C, Seidel A, Luk’yanchuk B, Chichkov B (2010) Optical response features of Si-nanoparticle arrays. Phys Rev B 82:045404

    Article  Google Scholar 

  52. Vial A, Laroche T (2007) Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J Phys D Appl Phys 40:7152–7158

    Article  CAS  Google Scholar 

  53. Bohren CF, Huffman DR (2007) Absorption and scattering of light by small particles. Wiley-VCH Verlag GmbH, United States. pp 1–11

    Google Scholar 

  54. Quinten M (2011) Mie’s theory for single spherical particles. In: Optical properties of nanoparticle systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. pp 75–122

    Google Scholar 

  55. Quinten M (2011) Beyond Mie’s theory II – the generalized Mie theory. In: Optical properties of nanoparticle systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. pp 317–339

    Google Scholar 

  56. Taminiau TH, Stefani FD, van Hulst NF (2011) Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett 11:1020–1024

    Article  CAS  PubMed  Google Scholar 

  57. Taminiau T, Stefani F, Segerink F, Van Hulst N (2008) Optical antennas direct single-molecule emission. Nat Photonics 2:234–237

    Article  CAS  Google Scholar 

  58. Pakizeh T, Käll M (2009) Unidirectional ultracompact optical nanoantennas. Nano Lett 9:2343–2349

    Article  CAS  PubMed  Google Scholar 

  59. Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS (2012) All-dielectric optical nanoantennas. Opt Express 20:20599–20604

    Article  PubMed  Google Scholar 

  60. Hopkins B, Poddubny AN, Miroshnichenko AE, Kivshar YS (2013) Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys Rev A 88:053819

    Article  Google Scholar 

  61. Engheta N, Salandrino A, Alù A (2005) Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 95:095504

    Article  PubMed  Google Scholar 

  62. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702

    Article  CAS  PubMed  Google Scholar 

  63. Harden J, Joshi A, Serna JD (2011) Demonstration of double EIT using coupled harmonic oscillators and RLC circuits. Eur J Phys 32:541–558

    Article  Google Scholar 

  64. Song K, Mazumder P (2009) An equivalent circuit modeling of an equispaced metallic nanoparticles (MNPs) plasmon wire. IEEE Trans Nanotechnol 8:412–418

    Article  Google Scholar 

  65. Engheta N, Salandrino A, Alù A (2011) Erratum: circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors [Phys Rev Lett 95:095504 (2005)]. Phys Rev Lett 106:089901

    Google Scholar 

  66. Zareie HM, Morgan SW, Moghaddam M, Maaroof AI, Cortie MB, Phillips MR (2008) Nanocapacitive circuit elements. ACS Nano 2:1615–1619

    Article  CAS  PubMed  Google Scholar 

  67. Alu A, Engheta N (2011) Optical metamaterials based on optical nanocircuits. Proc IEEE 99:1669–1681

    Article  Google Scholar 

  68. Alam M, Massoud Y (2006) RLC ladder model for scattering in single metallic nanoparticles. IEEE Trans Nanotechnol 5:491–498

    Article  Google Scholar 

  69. Alam M, Massoud Y, Eleftheriades GV (2011) A time-varying approach to circuit modeling of plasmonic nanospheres using radial vector wave functions. IEEE Trans Microwave Theory Tech 59:2595–2611

    Article  CAS  Google Scholar 

  70. Alu A, Engheta N (2008) Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photonics 2:307–310

    Article  CAS  Google Scholar 

  71. Lamb WE Jr, Retherford RC (1951) Fine structure of the hydrogen atom. Part II. Phys Rev 81:222–232

    Article  CAS  Google Scholar 

  72. Amin M, Bağci H (2012) Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity. Prog Electromagn Res 130:187–206

    Article  Google Scholar 

  73. Lekner J (2011) Capacitance coefficients of two spheres. J Electrost 69:11–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Dawazdah Emami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Emami, S.D., Penny, R., Abdul Rashid, H.A., Mohammed, W.S., Rahman, B.M.A. (2016). Fano Resonance in Plasmonic Optical Antennas. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_8

Download citation

Publish with us

Policies and ethics