Skip to main content

Lasers and Plasmonics: SPR Measurements of Metal Thin Films, Clusters and Bio-Layers

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

An extensive research has been carried out in synthesizing and characterizing single and double layer metal thin films of different thicknesses including ultrathin films. We discuss the experimental data of surface plasmon resonance (SPR) occurring at the interface between air, single and bimetallic thin layers of gold (Au) and silver (Ag) prepared on glass substrates. The bilayer configuration allowed for the measurements of the optical constants of metallic films that are ultra thin; e.g., below 10 nm of thickness since SPR modes on such thin films in a single layer configuration are shallow. In addition, using SPR technique, the optical constants of a natural biological thin layer (Allium cepa) is also estimated. Thickness and refractive index of metallic films were determined by matching experimental SPR curves to the theoretical ones. Thickness and roughness of the films were also measured by atomic force microscopy. The results obtained by experimental measurements are in good agreement with AFM analysis. It is estimated that the value of the real part of the dielectric constant of an onion epidermis is existing between the dielectric constants of water and air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goyer C, Labbe P (2011) Analytical tools for protein-carbohydrate interaction studies. In: Spinelli N, Renaudet O (eds) Synthesis and biological applications of glycoconjugates. Bentham Science University of Grenoble, France, pp 255–266

    Google Scholar 

  2. Kooyman RPH (2008) Physics of surface plasmon resonance. In: Tudos AJ, Schasfoort RBM (eds) Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge, pp 15–34

    Chapter  Google Scholar 

  3. Kretschmann E (1971) Determination of optical constants of metals through the stimulation of surface plasma oscillations. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  4. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  5. Ou S, Kwok K-C (2004) Ferulic acid: pharmaceutical functions, preparation and application in foods. J Sci Food Agric 84:1261–1269

    Article  CAS  Google Scholar 

  6. Zhai PM, Guo J, Xiang J, Zhou FM (2007) Electrochemical surface plasmon resonance spectroscopy at bilayered silver/gold films. J Phys Chem C 111:981–986

    Article  CAS  Google Scholar 

  7. Shan XN, Foley KJ, Zhang PM (2010) Measuring surface charge density and particle height using surface plasmon resonance technique. J Anal Chem 82:234–240

    Article  CAS  Google Scholar 

  8. Yao M, Tan OK, Tjin SC, Wolfe JC (2008) Effects of intermediate dielectric films on multilayer surface plasmon resonance behavior. Acta Biomater 4:2016–2027

    Article  CAS  PubMed  Google Scholar 

  9. Sarid D (1981) Long-range surface plasma waves on very thin metal films. Phys Rev Lett 47:1927

    Article  CAS  Google Scholar 

  10. Balci S, Kocabas C, Ates S, Karademir E, Salihoglu O, Aydinli A (2012) Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping. Phys Rev B 86:235402

    Article  Google Scholar 

  11. Balci S, Kocabas C, Aydinli A (2011) Critical coupling in plasmonic resonator arrays. Opt Lett 36:2770–2772

    Article  PubMed  Google Scholar 

  12. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion intracellular surface area. Int Rev Cytol 192:10–11

    Google Scholar 

  13. Kumar J, D’Souza SF (2011) Immobilization of microbial cells on inner epidermis of onion bulb scale for biosensor application. Biosens Bioelectron 26:4399–4404

    Article  CAS  PubMed  Google Scholar 

  14. Vanstreels E, Alamara MC, Verlindena BE (2005) Micromechanical behaviour of onion epidermal tissue. Postharvest Biol Technol 37:163–173

    Article  Google Scholar 

  15. Groff JR (2012) Estimating the size of onion epidermal cells from diffraction patterns. Phys Teach 50:420

    Article  Google Scholar 

  16. Plant Anatomy at the University of Hamburg (2014) Biologie.uni-hamburg.de. http://en.wikipedia.org/wiki/Onion_epidermal_cell. Accessed 17 June 2014

  17. Smith M (2014) Plasmolysis. Microscopy-uk.org.uk. Accessed 10 July 2014

    Google Scholar 

  18. Lee W-J, Kim J-E, Park HY, Park S, Kim M-s, Kim JT, Ju JJ (2008) Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths. J Appl Phys 103:0737131–0737135

    Google Scholar 

  19. Innes RA, Sambles JR (1987) Optical characterization of gold using surface plasmon-polaritons. J Phys F 17:277

    Article  CAS  Google Scholar 

  20. Heavens OS (1960) Optical properties of thin films. Rep Prog Phys 23:1–65

    Article  Google Scholar 

  21. Gent J-v, Lambeck PV, Kreuwel HJM, Gerritsma GJ, Ernst JR et al (1990) Optimization of a chemo-optical surface plasmon resonance based sensor. Appl Opt 29:2843–2849

    Article  PubMed  Google Scholar 

  22. Brink G, Sigl H, Sackmann E (1995) Near-infrared surface plasmon resonance in silicon-based sensor: new opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding. Sens Actuators B Chem 25:756–761

    Article  CAS  Google Scholar 

  23. Yan H, Hong-An Y, Song-Quan L, Yen-Fing D (2013) The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain. Chin Phys B 22:027301

    Article  Google Scholar 

  24. Yano M, Fukui M, Haragichi M, Shintani Y (1990) In situ and real-time observation of optical constants of metal films during growth. Surf Sci 227:129–137

    Article  CAS  Google Scholar 

  25. Gadenne P, Vuye G (1977) In situ determination of the optical and electrical properties of thin films during their deposition. J Phys E 10:733–736

    Article  CAS  Google Scholar 

  26. Reale C (1970) Optical constants of vacuum deposited thin metal films in the near infrared. Infrared Phys 10:173–181

    Article  CAS  Google Scholar 

  27. Nesterenko DV, Rehman SU, Sekkat Z (2012) Surface plasmon sensing with different metals in single and double layer configurations. Appl Opt 51:6673–6682

    Article  CAS  PubMed  Google Scholar 

  28. Nesterenko DV, Sekkat Z (2013) Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics 8:1585–1595

    Article  CAS  Google Scholar 

  29. Rehman SU, Rahmouni A, Mahfoud T, Nesterenko DV, Sekkat Z (2014) Determination of the optical thickness of sub 10-nm thin metal films by SPR experiments. Plasmonics 9:381–387

    Article  CAS  Google Scholar 

  30. Rehman SU, Mumtaz H, Hayashi S, Shaukat SF, Sekkat Z (2014) Estimation of optical constants of a bio-thin layer (onion epidermis), using SPR spectroscopy. J Opt 16:125014

    Article  Google Scholar 

  31. Worm J (2009) WINSPALL, version 3.02. Available http://archive.is/6yLw9. Accessed 15 July 2013

  32. Cardona M (1971) Fresnel reflection and surface plasmon. Am J Phys 39:1277

    Article  Google Scholar 

  33. Pan M (2009) Using multiple layers and surface roughness control for improving the sensitivity of SPR sensors. M.Phil dissertation, University of Birmingham, Birmingham, United Kingdom

    Google Scholar 

  34. Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  35. Ekgasit S, Yu F, Knoll W (2005) Fluorescence intensity in surface plasmon field-enhanced fluorescence spectroscopy. Sens Actuators B Chem 104:294–301

    Article  CAS  Google Scholar 

  36. Palik ED (1998) Handbook of optical constants of solids. Academic, New York, p 999

    Google Scholar 

  37. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12:555–563

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge Prof. Shinji Hayashi for his fruitful guidelines and scientific input to improve the quality of the manuscript. I also acknowledge Dr. Dmitry Nesterenko and Dr. Anouar Rahmouni for their help during the experimental design and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Ur Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rehman, S.U., Saleem, M., Raza, R., Shuaib, A., SEKKAT, Z. (2016). Lasers and Plasmonics: SPR Measurements of Metal Thin Films, Clusters and Bio-Layers. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_13

Download citation

Publish with us

Policies and ethics