Skip to main content

Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

Abstract

Optical properties of noble metal (Au, Ag) nanoclusters are of remarkable interest owing to the understanding fundamental issues of electronic properties in the small metallic clusters and their applications in nonlinear optics. The surface plasmon resonance (SPR), defined as resonance frequency of coherently oscillating free electrons with the exciting light, occurring in the near-UV-Visible region leads to the major applications. We discuss results, both experimental and theoretical, reporting the red or blue shift of the SPR frequency with decreasing noble metal cluster size as an effect of embedding matrix and surrounding porosity as well as in free noble metal nanoclusters without matrix. Reduction of the electron density (spillout effect) in the small nanoclusters and the interband screening of electrons in noble metals for larger nanoclusters shift the frequency of light absorbed either to the red or blue region, respectively, with decreasing cluster size. A strong dependence of the cluster size with the SPR frequency is discussed using time dependent local density approximation (TDLDA) with the consideration of porosity of surrounding medium. As the most recent report, quantum effect is also considered to understand blue shift of the SPR frequency of individual Ag nanoclusters with reducing size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lermé J, Palpant B, Prével B, Pellarin M, Treilleux M, Vialle JL, Perez A, Broyer M (1998) Quenching of the size effects in free and matrix-embedded silver clusters. Phys Rev Lett 80:5105–5108

    Article  Google Scholar 

  2. Liao HB, Xiao RF, Fu JS, Yu P, Wong GKL, Sheng P (1997) Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl Phys Lett 70:1–3

    Article  CAS  Google Scholar 

  3. Dhara S, Lu C-Y, Magudapathy P, Huang Y-F, Tu W-S, Chen K-H (2015) Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system. Appl Phys Lett 106:023101

    Article  Google Scholar 

  4. Dhara S, Lu C-Y, Chen K-H (2015) Plasmonic switching in Au functionalized GaN nanowires in the realm of surface plasmon polatriton propagation: a single nanowire switching device. Plasmonics 10:347–350

    Article  CAS  Google Scholar 

  5. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9:205–213

    Article  CAS  Google Scholar 

  6. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851

    Article  CAS  PubMed  Google Scholar 

  7. Juluri BK, Zheng YB, Ahmed D, Jensen L, Huang TJ (2008) Effects of geometry and composition on charge-induced plasmonic shifts in gold nanoparticles. J Phys Chem C 112:7309–7317

    Article  CAS  Google Scholar 

  8. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  9. Garg P, Dhara S (2013) Single molecule detection using SERS study in PVP functionalized Ag nanoparticles. AIP Conf Proc 1512:206–207

    Article  CAS  Google Scholar 

  10. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86

    Article  CAS  PubMed  Google Scholar 

  11. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  12. Palpant B, Prével B, Lermé J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M (1998) Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B 57:1963–1970

    Article  CAS  Google Scholar 

  13. Lermé J, Palpant B, Prével B, Cottancin E, Pellarin M, Treilleux M, Vialle JL, Perez A, Broyer M (1998) Optical properties of gold metal clusters: a time-dependent local-density-approximation investigation. Eur Phys J D 4:95–108

    Google Scholar 

  14. Srivastava SK, Gangopadhyay P, Amirthapandian S, Sairam TN, Basu J, Panigrahi BK, Nair KGM (2014) Effects of high-energy Si ion-irradiations on optical responses of Ag metal nanoparticles in a SiO2 matrix. Chem Phys Lett 607:100–104

    Article  CAS  Google Scholar 

  15. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–427

    Article  CAS  PubMed  Google Scholar 

  16. Hosoya Y, Suga T, Yanagawa T, Kurokawa Y (1997) Linear and nonlinear optical properties of sol–gel-derived Au nanometer-particle-doped alumina. J Appl Phys 81:1475–1480

    Article  CAS  Google Scholar 

  17. Meldrum A, Boatner LA, White CW, Ewing RC (2000) Ion irradiation effects in nonmetals: formation of nanocrystals and novel microstructures. Mater Res Innov 3:190–204

    Article  CAS  Google Scholar 

  18. Miotelo A, De Merchi G, Mattei G, Mazzoldi P, Sada C (2001) Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres. Phys Rev B 63:075409

    Article  Google Scholar 

  19. Dai Z, Yamamoto S, Narumi K, Miyashita A, Naramoto H (1999) Gold nanoparticle fabrication in single crystal SiO2 by MeV Au ion implantation and subsequent thermal annealing. Nucl Instr Meth Phys Res B 149:108–112

    Article  CAS  Google Scholar 

  20. Ila D, Williams EK, Zimmerman RL, Poker DB, Hensley DK (2000) Radiation induced nucleation of nanoparticles in silica. Nucl Instr Meth Phys Res B 166–167:845–850

    Article  Google Scholar 

  21. Dhara S, Sundaravel B, Ravindran TR, Nair KGM, David C, Panigrahi BK, Magudapathy P, Chen KH (2004) ‘Spillout’ effect in gold nanoclusters embedded in c-Al2O3(0001) matrix. Chem Phys Lett 399:354–358

    Article  CAS  Google Scholar 

  22. Dhara S, Kesavamoorthy R, Magudapathy P, Premila M, Panigrahi BK, Nair KGM, Wu CT, Chen KH (2003) Quasiquenching size effects in gold nanoclusters embedded in silica matrix. Chem Phys Lett 370:254–260

    Article  CAS  Google Scholar 

  23. Raza S, Stenger N, Kadkhodazadeh S, Fischer SV, Kostesha N, Jauho A-P, Burrows A, Wubs M, Mortensen NA (2013) Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2:131–138

    Article  CAS  Google Scholar 

  24. Palpant B, Portales H, Saviot L, Lerme J, Prevel B, Pellarin M, Duval E, Perez A, Broyer M (1999) Quadrupolar vibrational mode of silver clusters from plasmon-assisted Raman scattering. Phys Rev B 60:17107–17111

    Article  CAS  Google Scholar 

  25. Saviot L, Murray DB, de Lucas M (2004) Vibrations of free and embedded anisotropic elastic spheres: application to low-frequency Raman scattering of silicon nanoparticles in silica. Phys Rev B 69:113402–113404

    Article  Google Scholar 

  26. Ekardt W (1984) Work function of small metal particles: self-consistent spherical jellium-background model. Phys Rev B 29:1558–1564

    Article  CAS  Google Scholar 

  27. Wannier GH (1962) Dynamics of band electrons in electric and magnetic fields. Rev Mod Phys 34:645–655

    Article  Google Scholar 

  28. Nenciu G (1991) Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev Mod Phys 63:91–128

    Article  Google Scholar 

  29. Feldmann J, Leo K, Shah J, Miller DAB, Cunningham JE, Meier T, von Plessen G, Schulze A, Thomas P, Schmitt-Rink S (1992) Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys Rev B 46:7252–7255

    Article  Google Scholar 

  30. Hawton M, Dignam MM (2003) Infinite-order excitonic Bloch equations for asymmetric nanostructures. Phys Rev Lett 91:267402

    Article  CAS  PubMed  Google Scholar 

  31. Bruggeman DAG (1935) Calculation of various physical constants of heterogeneous substances. Ann Phys (Leipzig) 24:636–679

    Article  CAS  Google Scholar 

  32. Tiggesbäumker J, Köller L, Meiwes-Broer KH, Liebsch A (1993) Blue shift of the Mie plasma frequency in Ag clusters and particles. Phys Rev A 48:R1749–R1752

    Article  PubMed  Google Scholar 

  33. Fedrigo S, Harbich W, Buttet J (1993) Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys Rev B 47:10706

    Article  CAS  Google Scholar 

  34. Charl’e KP, Schulze W, Winter B (1989) The size dependent shift of the surface plasmon absorption band of small spherical metal particles. Z Phys D 12:471–475

    Article  Google Scholar 

  35. Genzel L, Martin TP, Kreibig U (1975) Dielectric function and plasma resonances of small metal particles. Z Phys B 21:339–346

    Article  CAS  Google Scholar 

  36. Cottancin E, Lerme’ J, Gaudry M, Pellarin M, Vialle J-L, Broyer M, Pre’vel B, Treilleux M, Me’linon P (2000) Size effects in the optical properties of Au n Ag n embedded clusters. Phys Rev B 62:5179–5185

    Article  CAS  Google Scholar 

  37. Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012) Quantum finite-size effects in graphene plasmons. ACS Nano 6:1766–1775

    Article  CAS  PubMed  Google Scholar 

  38. Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    Article  CAS  PubMed  Google Scholar 

  39. Gaudry M, Lerme’ J, Cottancin E, Pellarin M, Vialle J-L, Broyer M, Pre’vel B, Treilleux M, Me’linon P (2001) Optical properties of (Au x Ag1−x ) n clusters embedded in alumina: evolution with size and stoichiometry. Phys Rev B 64:085407

    Article  Google Scholar 

  40. Ripken K (1972) Optical-constants of Au, Ag and their alloys in energy region from 2.4 to 4.4 eV. Z Phys 250:228–234

    Article  Google Scholar 

  41. Nilsson PO (1970) Electronic structure of disordered alloys: optical and photoemission measurements on Ag-Au and Cu-Au alloys. Phys Kondens Mater 11:1–18

    CAS  Google Scholar 

  42. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Dhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dhara, S. (2016). Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_11

Download citation

Publish with us

Policies and ethics