Workshop on Augmented Environments for Computer-Assisted Interventions

MICCAI 2015: Augmented Environments for Computer-Assisted Interventions pp 92-103 | Cite as

Augmented Reality for Specific Neurovascular Surgical Tasks

  • Marta Kersten-Oertel
  • Ian J. Gerard
  • Simon Drouin
  • Kelvin Mok
  • Denis Sirhan
  • David S. Sinclair
  • D. Louis Collins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9365)

Abstract

Augmented reality has the potential to aid surgeons with particular surgical tasks in image-guided surgery. In augmented reality (AR) visualization for neurosurgery, the live view of the surgical scene is merged with preoperative patient data, aiding the surgeon in mapping patient images from the image-guidance system to the real patient. Furthermore, augmented reality visualization allows the surgeon to see beyond the visible surface of the head or brain at the anatomy that is relevant at different stages of surgery. In this paper, the particular surgical tasks that have benefited from AR visualization by the neurosurgeons that have used our system are described. These tasks include: tailoring a craniotomy, localizing the anatomy of interest, planning a resection corridor and determining a surgical strategy. We present each of these surgical tasks and provide examples of how AR was used in the operating room.

Keywords

Augmented reality Neurosurgery Neurovascular surgery Task-based analysis Image-guided neurosurgery 

References

  1. 1.
    Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imaging Graph. 37, 98–112 (2013)CrossRefGoogle Scholar
  2. 2.
    Kersten-Oertel, M., Gerard, I., Drouin, S., Mok, K., Sirhan, D., Sinclair, D., Collins, D.L.: Augmented reality in neurovascular surgery: first experiences. In: Linte, C.A., Yaniv, Z., Fallavollita, P., Abolmaesumi, P., Holmes III, D.R. (eds.) AE-CAI 2014. LNCS, vol. 8678, pp. 80–89. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Kersten-Oertel, M., Gerard, I., Drouin, S., Mok, K., Sirhan, D., Sinclair, D.S., Collins, D.L.: Augmented reality in neurovascular surgery: feasibility and first uses in the operating room. Int. J. Comput. Assist. Radiol. Surg., 26 Feb 2015Google Scholar
  4. 4.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)CrossRefGoogle Scholar
  5. 5.
    Gerard, I.J., Hall, J.A, Mok, K., Collins, D.L.: New protocol for skin landmark registration in image-guided neurosurgery: technical note. Neurosurgery (2015)Google Scholar
  6. 6.
    Gleason, P.L., Kikinis, R., Altobelli, D., Wells, W., Alexander 3rd, E., Black, P.M., Jolesz, F.: Video registration virtual reality for nonlinkage stereotactic surgery. Stereotact. Funct. Neurosurg. 63, 139–143 (1994)CrossRefGoogle Scholar
  7. 7.
    Edwards, P., Hawkes, D., Hill, D., Jewell, D., Spink, R., Strong, A., Gleeson, M.: Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. J. Image Guid. Surg. 1, 172–178 (1995)CrossRefGoogle Scholar
  8. 8.
    Edwards, P.J., King, A.P., Hawkes, D.J., Fleig, O., Maurer Jr., C.R., Hill, D.L., Fenlon, M.R., de Cunha, D.A., Gaston, R.P., Chandra, S., Mannss, J., Strong, A.J., Gleeson, M.J., Cox, T.C.: Stereo augmented reality in the surgical microscope. Stud. Health Technol. Inform. 62, 102–108 (1999)Google Scholar
  9. 9.
    Birkfellner, W., Figl, M., Matula, C., Hummel, J., Hanel, R., Imhof, H., Wanschitz, F., Wagner, A., Watzinger, F., Bergmann, H.: Computer-enhanced stereoscopic vision in a head-mounted operating binocular. Phys. Med. Biol. 48, N49–N57 (2003)CrossRefGoogle Scholar
  10. 10.
    Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz, F., Hummel, J., Hanel, R., Greimel, W., Homolka, P., Ewers, R., Bergmann, H.: A head-mounted operating binocular for augmented reality visualization in medicine - design and initial evaluation. IEEE Trans. Med. Imaging 21, 991–997 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Cabrilo, I., Bijlenga, P., Schaller, K.: Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochir. (Wien) 156, 1769–1774 (2014)CrossRefGoogle Scholar
  12. 12.
    Cabrilo, I., Bijlenga, P., Schaller, K.: Augmented reality in the surgery of cerebral aneurysms: a technical report. Neurosurgery 10(Suppl. 2), 252–260 (2014). discussion 260–261CrossRefGoogle Scholar
  13. 13.
    Eskildsen, S.F., Østergaard, L.R.: Active surface approach for extraction of the human cerebral cortex from MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 823–830. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gerard, I.J., Kersten-Oertel, M., Petrecca, K., Drouin, S., Mok, K., Nigris, D.D., Arbel, T., Collins, D.L.: Improving augmented reality visualization with intra-operative ultrasound in image guided neurosurgery: case report. In: Cars 2015, Barcelona (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marta Kersten-Oertel
    • 1
    • 3
  • Ian J. Gerard
    • 1
    • 3
  • Simon Drouin
    • 1
    • 3
  • Kelvin Mok
    • 3
  • Denis Sirhan
    • 2
    • 3
  • David S. Sinclair
    • 2
    • 3
  • D. Louis Collins
    • 1
    • 2
    • 3
  1. 1.Biomedical EngineeringMcGill UniversityMontréalCanada
  2. 2.Neurology and NeurosurgeryMcGill UniversityMontréalCanada
  3. 3.Montreal Neurological Institute and HospitalMontréalCanada

Personalised recommendations