International Conference on Entertainment Computing

Entertainment Computing - ICEC 2015 pp 533-538 | Cite as

Digital Art Application Development: A Project to Increase Motivation in Systems Development Courses for Bachelor Students in Computer Engineering

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9353)

Abstract

In this demonstration, we present some in-progress results of using digital art application development as an example of entertainment computing for increasing motivation and participation in a computer engineering undergraduate systems development course, with the purpose of improving the chances of reaching the intended learning outcomes. By stimulating motivation and participation via an openly defined project description of making an interactive art application in a competitive context, a variety of interesting project outcomes were produced, despite the fact that the project did not count towards the final grading of the course. The students made their applications by combining existing programming skills with the programming language Processing, lessons in Human-Computer-Interaction and software development methodologies.

Keywords

Art and motivation Creative activities Digital creativity Teaching Software engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karlsen, A., Kristiansen, H.: Undervisningsrefleksjoner fra et konkurranseprosjekt i samarbeid med næringslivsaktør. Norsk konferanse for organisasjoners bruk av informasjonsteknologi (NOKOBIT 2014), Open Access at: http://obj.bibsys.no/index.php/NOKOBIT/index
  2. 2.
    Trifonova, A., Jaccheri, L., Bergaust, K.: Software engineering issues in interactive installation art. Int. J. Arts and Technology 1(1), 43–65 (2008)CrossRefGoogle Scholar
  3. 3.
    Giannakos, M.N., Jaccheri, L.: Designing creative activities for children: the importance of collaboration and the threat of losing control. In: Proceedings of the 12th International Conference on Interaction Design and Children. ACM (2013)Google Scholar
  4. 4.
    Altman, E., Nakatsu, R.: Interactive Movies: Techniques, Technology and Content. Course Notes. In: SIGGRAPH 1997, vol. (16), ACM (1997)Google Scholar
  5. 5.
    Overmars, M.: Teaching computer science through game design. Computer 37(4), 81–83 (2004)CrossRefGoogle Scholar
  6. 6.
    Schaathun, W., Schaathun, H.G., Bye, R.T.: Aktiv læring i mikrokontrollarar. Artikkel presentert på MNT- konferansen 2015 og under vurdering for publisering i Uniped (2015)Google Scholar
  7. 7.
    Gynnild, V.: Læringsorientert eller eksamensfokusert? Nærstudier av pedagogisk utviklingsarbeid i sivilingeniørstudiet. PhD, NTNU, Trondheim (2001)Google Scholar
  8. 8.
    Marton, F.: Phenomenography – describing conceptions of the world around us. Instructional Science 10, 177–200 (1981)CrossRefGoogle Scholar
  9. 9.
    Marton, F., Booth, S.: Learning and awareness. Lawrence Erlbaum, Mahwaw (1997)Google Scholar
  10. 10.
    Prosser, M., Trigwell, K.: Understanding learning and teaching: The experience on higher education. Society for Research in Higher Education / Open Univeristy Press, Buckingham (1999)Google Scholar
  11. 11.
    Prince, M.J.: Does active learning work? A review of the research. Journal of Engineering Education 93(3), 223–231 (2004)CrossRefGoogle Scholar
  12. 12.
    Bowen, C.W.: A Quantitative Literature Review of Cooperative Learning Effects on High School and College Chemistry Achievement. Journal of Chemical Education 77(1), 116 (2000)CrossRefGoogle Scholar
  13. 13.
    Foldnes, N.: Cooperative Learning in the Flipped Classroom: A Randomized Experiment. Unpublished manuscript (2014)Google Scholar
  14. 14.
    Johnson, D., Johnson, R., Smith, K.: Active Learning: Cooperation in the College Classroom (2 utg). Interaction Book Co, Edina (1998)Google Scholar
  15. 15.
    Springer, L., Stanne, M., Donovan, S.: Effects of small-group learning on undergraduates in science, mathematics, engineering and technology: A meta-analysis. Review of Educational Research 69(1), 21–52 (1999)CrossRefGoogle Scholar
  16. 16.
    Nakatsu, R., Rauterberg, M., Vorderer, P.: A new framework for entertainment computing: from passive to active experience. In: Kishino, F., Kitamura, Y., Kato, H., Nagata, N. (eds.) ICEC 2005. LNCS, vol. 3711, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Vorderer, P., Klimmt, C., Ritterfeld, U.: Enjoyment: At the heart of media entertainment. Communication Theory 14(4), 388–408 (2004)CrossRefGoogle Scholar
  18. 18.
    Greenberg, I., Xu, D., Kumar, D.: Processing – Creative coding and Generative Art in Processing 2. Friendsof – an Apress company (2013)Google Scholar
  19. 19.
    Reas, C., Fry, B.: Getting Started with Processing. O´Reilly (2010)Google Scholar
  20. 20.
    Kunnskapsdepartementet. Ny forskrift om rammeplan for ingeniørutdanning, Kunnskapsdepartementets internettside med lenke til lovdata (2011), http://lovdata.no/dokument/SF/forskrift/2011-02-03-107
  21. 21.
    Nasjonalt råd for teknologisk utdanning. Nasjonale retningslinjer for ingeniørutdanning: På vei mot fremtiden! (2011) (Downloaded May 11, 2015) http://www.uhr.no/documents/Nasjonale_retningslinjer_for_ingeni_rutdanning_ENGELSK.pdf
  22. 22.
    Hattie, J.: Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge (2013)Google Scholar
  23. 23.
    Sotto, E.: When teaching becomes learning: A theory and practice of teaching, vol. 2. Continuum, London (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Aalesund University CollegeAalesundNorway

Personalised recommendations