Design-Based Learning in Classrooms Using Playful Digital Toolkits

  • K. J. Scheltenaar
  • J. E. C. van der Poel
  • M. M. Bekker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9353)


The goal of this paper is to explore how to implement Design Based Learning (DBL) with digital toolkits to teach 21st century skills in (Dutch) schools. It describes the outcomes of a literature study and two design case studies in which such a DBL approach with digital toolkits was iteratively developed. The outcome is described in the form of a framework that explains how to consider different perspectives, such as the DBL process, the role of the teacher, the use of a digital toolkit and the framing of the design brief in relation to setting learning goals that are suitable for a school context. The design cases indicate that DBL with digital toolkits can play a valuable role in teaching 21st Century skills, such as problem solving, creativity, and digital literacy to children in schools, if the other components of the framework, such as school’s learning goals, are taken into account.


playful learning design-based learning creative learning digital toolkits construction toolkits children 21st century skills 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European Parliament: The Lisbon Strategy 2000 – 2010 An analysis and evaluation of the methods used and results, European Parliament, Brussels (2010)Google Scholar
  2. 2.
    Klapwijk, R., Holla, E.: Leidraad onderzoekend en ontwerpend leren. Wetenschapsknooppunt Zuid-Holland, Delft (2014)Google Scholar
  3. 3.
    Kolodner, J.L., Camp, P., Crismond, D., Holbrook, J., Puntembaker, S., Ryan, M.: Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design(tm) Into Practice. Journal of the Learning Sciences, 495–547 (2003)Google Scholar
  4. 4.
    Resnick, M.: All I really need to know (about creative thinking) I learned (by studying how children learn) in kindergarten. In: C&C 2007Google Scholar
  5. 5.
    Thijs, A., Fisser, P., van der Hoeven, M.: 21e eeuwse vaardigheden in het curriculum van het funderend onderwijs: een conceptueel kader. SLO, nationaal expertisecentrum leerplanontwikkeling, Enschede (2014)Google Scholar
  6. 6.
    Department for Education United Kingdom, National curriculum - GOV.UK, September 11, 2013.
  7. 7.
    Hummels, C., Frens, J.: The reflective transformative design process. In: CHI 2009 Extended Abstracts on Human Factors in Computing Systems, pp. 2655–2658 (2009)Google Scholar
  8. 8.
    den Brok, P.J., van Diggelen, M.: Implementatie van Technasia. Eindhoven School of Education, Eindhoven (2013)Google Scholar
  9. 9.
    van der Graft, M., Kemmers, P.: Onderzoekend en Ontwerpend Leren bij Natuur en Techniek: Basisdocument over de didactiek voor onderzoekendkend en ontwerpend leren in het primair onderwijs. Stichting Platform Bèta Techniek, Den Haag (2007)Google Scholar
  10. 10.
    White House Office of Science and Technology Policy, Preparing Americans with 21st Century Skills, White House Office of Science and Technology Policy, Washington, D.C. (2014)Google Scholar
  11. 11.
    SLO, Kerndoelen Primair Onderwijs, SLO, nationaal expertisecentrum leerplanontwikkeling, Enschede (2006)Google Scholar
  12. 12.
    Onderbouw-VO, Karakteristieken en kerndoelen voor de onderbouw. Onderbouw-VO, Zwolle (2006)Google Scholar
  13. 13.
    Piaget, J.: Piaget’s theory. Springer, Heidelberg (1976)Google Scholar
  14. 14.
    Dochy, F., Segers, M., De Rijdt, C.: Assessment in onderwijs: nieuwe toetsvormen en examinering in studentgericht onderwijs en competentiegericht onderwijs. Uitgeverij LEMMA BV, Utrecht (2002)Google Scholar
  15. 15.
    Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall, Englewood Cliffs (1984)Google Scholar
  16. 16.
    Birenbaum, M.: New insights into learning and teaching and their implications for assessment. In: Optimising New Modes of Assessment: in Search of Qualities and Standards, pp. 13–36 (2003)Google Scholar
  17. 17.
    Piaget, J.: How children form mathematical concepts. Scientific American 189, 74–79 (1953)CrossRefGoogle Scholar
  18. 18.
    Terrenghi, L., et al.: A cube to learn: a tangible user interface for the design of a learning appliance. Personal and Ubiquitous Computing, 153–158 (2006)Google Scholar
  19. 19.
    Giannakos, M.N., Jaccheri, L.: An enriched artifacts activity for supporting creative learning: Perspectives for children with impairments. In: Anacleto, J.C., Clua, E.W.G., da Silva, F.S.C., Fels, S., Yang, H.S. (eds.) ICEC 2013. LNCS, vol. 8215, pp. 160–163. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Blikstein, P.: Gears of our childhood: constructionist toolkits, robotics and physical computing, past and future. In: Interaction Design and Children IDC, New York (2013)Google Scholar
  21. 21.
    littleBits Electronics Inc., littleBits: DIY Electronics For Prototyping And Learning, May 12, 2015.
  22. 22.
    Arduino, Arduino - Home, May 12, 2015.
  23. 23.
    Resnick, M., Rosenbaum, E.: Designing for tinkerability. In: Designing for Tinkerability, New York, Routledge, p. 164 (2013)Google Scholar
  24. 24.
    Lassiter et al.: Training and Inspiring Educators in Digital Fabrication: A Professional Development Framework, February 9 ResearchGoogle Scholar
  25. 25.
    Resnick, M., Martin, F., Sargent, R., Silverman, B.: Programmable Bricks: toys to think with. IBM Systems 35, 443–452 (1996)CrossRefGoogle Scholar
  26. 26.
    Blumenfeld, P.C., et al.: Motivating Project-based Learning Sustaining the Doing Supporting the Learning. Educational Psychologist 26(3-4), 369–398 (1991)CrossRefGoogle Scholar
  27. 27.
    Hennessya, S., Wishartb, J., Whitelockc, D., Deaneya, R., Brawnb, R., Velleb, L.I., McFarlaneb, A., Ruthvena, K., Winterbottom, M.: Pedagogical approaches for technology-integrated science teaching. Computers & Education 48(1), 137–152 (2007)CrossRefGoogle Scholar
  28. 28.
    Sjøberg, S.: Science and Technology in Education - Current Challenges and Possible Solutions. Meeting of European Ministers of Education and Research, Uppsala (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • K. J. Scheltenaar
    • 1
  • J. E. C. van der Poel
    • 1
  • M. M. Bekker
    • 1
  1. 1.Department of Industrial DesignEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations