Skip to main content

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 17))

  • 914 Accesses

Abstract

Reconfigurability, a concept of utmost importance in communication systems has been foreseen over two decades ago (Mitola, IEEE Aerosp. Electron Syst Mag, 8:25–36, 1993, Jondral et al., 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, 2000). Reconfiguration of a radio to achieve higher hardware performance is turning to be not only a requirement, but also a necessity in current radio architectures for services and portable devices in the frequency spectrum below 6 GHz. Advances in software and hardware development have been targeting this idea, and thus, leading to an evolution for modern radio architectures relaying in key concepts, such as Software Defined Radio and Cognitive Radio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, programming of baseband algorithms that reconfigure the overall communication architecture according to the capabilities of the employed hardware in the RF-Frontend.

References

  1. J. Mitola, Software radios: survey, critical evaluation and future directions. IEEE Aerosp. Electron Syst. Mag. 8, 25–36 (1993)

    Article  Google Scholar 

  2. F. Jondral, A. Wiesler, R. Machauer, A software defined radio structure for 2nd and 3rd generation mobile communications standards, in 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, 2000

    Google Scholar 

  3. J. Mitola, Cognitive radio an integrated agent architecture for software defined radio, PhD thesis, (Royal Institute of Technology (KTH), 2000)

    Google Scholar 

  4. A. Margulies, J. Mitola, Software defined radios: a technical challenge and a migration strategy, in Proceedings of the IEEE 5th International Symposium on Spread Spectrum Techniques and Applications, vol. 2 September (1998), pp. 551–556

    Google Scholar 

  5. J. Mitola, G. Maguire, Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6, 13–18 (1999)

    Article  Google Scholar 

  6. R. Courtland, The end of the shrink. IEEE Spectr. 50, 26–29 (2013)

    Google Scholar 

  7. C. Vu, Made in ibm labs: researchers demonstrate initial steps toward commercial fabrication of carbon nanotubes as a successor to silicon. Online, Oct 2012. Accessed Feb 2014

    Google Scholar 

  8. H. Park, A. Afzali, S. Han, G. Tulevski, A. Franklin, J. Tersoff, J. Hannon, W. Haensch, High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7, 787–791 (2012)

    Article  Google Scholar 

  9. 3GPP tr 36.942 version 8.2.0 release 8. LTE. evolved universal terrestrial radio access (E-UTRA). radio frequency (RF) system scenarios, 2009

    Google Scholar 

  10. Mobile and wireless communications Enablers for the Twenty-twenty Information Society, Metis, 2014

    Google Scholar 

  11. S. Heinen R. Wunderlich, High dynamic range rf frontends from multiband multistandard to cognitive radio, in Semiconductor Conference Dresden (SCD), 2011

    Google Scholar 

  12. T. Zahariadis, K. Vaxevanakis, C. Tsantilas, N. Zervos, N. Nikolaou, Global roaming in next-generation networks. IEEE Commun. Mag. 40, 145–151 (2002)

    Google Scholar 

  13. H. Okazaki, A. Fukuda, K. Kawai, T. Furuta, S. Narahashi, Mems-based reconfigurable rf front-end architecture for future band-free mobile terminals, in European Microwave Conference (2007)

    Google Scholar 

  14. I. Nam, H. Moon, J.-D. Bae, B.-H. Park, A wideband cmos rf front-end using ac-coupled current mirrored technique for multiband multistandard mobile tv tuners. IEEE Microw. Wirel. Compon. Lett 17, 739–741 (2007)

    Article  Google Scholar 

  15. I. Cha, Y. Shah, A. Schmidt, A. Leicher, M. Meyerstein, Trust in m2m communication. IEEE Veh. Technol. Mag. 4, 69–75 (2009)

    Article  Google Scholar 

  16. M. Cinque, D. Cotroneo, Z. Kalbarczyk, R. Iyer, How do mobile phones fail? A failure data analysis of symbian os smart phones, in 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 2007. DSN ’07, pp. 585–594, June 2007

    Google Scholar 

  17. 3GPP ts 34.121-1 version 9.3.0 release 9. Universal mobile telecommunications system (UMTS); User Equipment (UE) conformance specification; radio transmission and reception (FDD); part 1: Conformance specification. etsi ts 134 121-1 v9.3.0, 2011

    Google Scholar 

  18. Lte; evolved universal terrestrial radio access (e-utra); user equipment (ue) conformance specification; radio transmission and reception; part 1: Conformance testing (3gpp ts 36.521-1 version 10.4.0 release 10). etsi ts 136 521-1 v10.4.0 (2013-02), 2013

    Google Scholar 

  19. 3rd generation partnership project; technical specification group gsm/edge radio access network; radio transmission and reception (release 11). 3gpp ts 45.005 v11.2.0 (2012-11), 2012

    Google Scholar 

  20. Digital video broadcasting (DVB); DVB-H implementation guidelines. ETSI TR 102 377 v1.3.1 (2009-03), 2009

    Google Scholar 

  21. IEEE std 802.11-2012. IEEE standard for information technology-telecommunications and information exchange between systems local and metropolitan area networks-specific requirements. part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications, 2012

    Google Scholar 

  22. IEEE std 802.15.1-2005. IEEE standard for information technology-telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements part 15.1: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPANs) (2005)

    Google Scholar 

  23. IEEE std 802.15.4-2006. IEEE standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (lr-wpans) (2006)

    Google Scholar 

  24. IEEE std 802.16.2-2004. IEEE recommended practice for local and metropolitan area networks coexistence of fixed broadband wireless access systems (2004)

    Google Scholar 

  25. B. Eissfeller, G. Ameres, V. Kropp, D. Sanroma, Performance of gps, glonass and galileo, in Photogrammetric Week, 2007

    Google Scholar 

  26. A. Tanenbaum, Computer Networks (Pearson Education, New Jersey, 2003)

    MATH  Google Scholar 

  27. V. Nguyen, F. Villain, Y. Le Guillou, Cognitive radio RF: Overview and challenges. VLSI Des. 2, 1–12 (2012)

    Article  Google Scholar 

  28. D.M. Gann, M. Dodgson, D. Bhardwaj, Physical-digital integration in city infrastructure. IBM J. Res. Dev. 55, 8:1–8:10 (2011)

    Google Scholar 

  29. B. Morvaj, L. Lugaric, S. Krajcar, Demonstrating smart buildings and smart grid features in a smart energy city, in Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE) (2011)

    Google Scholar 

  30. L. Lugaric, S. Krajcar, Z. Simic, Smart city platform for emergent phenomena power system testbed simulator, in Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES (2010)

    Google Scholar 

  31. R. Singh, P. Bhargava, S. Kain, Smart phones and interactive reports leave traffic in the rearview mirror. IEEE Potentials 27, 33–38 (2008)

    Article  Google Scholar 

  32. M. Elhawary, Z. Haas, Energy-efficient protocol for cooperative networks. IEEE/ACM Trans. Netw. 19, 561–574 (2011)

    Article  Google Scholar 

  33. C. Borcea, D. Iyer, P. Kang, A. Saxena, L. Iftode, Cooperative computing for distributed embedded systems, in Proceedings of 22nd International Conference on Distributed Computing Systems (2002)

    Google Scholar 

  34. R. Kaewpuang, D. Niyato, P. Wang, E. Hossain, A framework for cooperative resource management in mobile cloud computing. IEEE J. Sel. Areas Commun. 31, 2685–2700 (2013)

    Article  Google Scholar 

  35. M. Milosavljevic, S. Sofianos, P. Kourtessis, J. Senior, Self-organized cooperative 5g rans with intelligent optical backhauls for mobile cloud computing, in 2013 IEEE International Conference on Communications Workshops (ICC), pp. 900–904, June 2013

    Google Scholar 

  36. C. Cassandras, W. Li, Sensor networks and cooperative control. Eur. J. Control 11(4–5), 436–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Wang, Z. Cheng, I. Nishiyama, Y. Zhou, Design of a safety confirmation system integrating wireless sensor network and smart phones for disaster, in 2012 IEEE 6th International Symposium on Embedded Multicore Socs (MCSoC), pp. 139–143, September 2012

    Google Scholar 

  38. M. Kennedy, A. Ksentini, Y. Hadjadj-Aoul, G. Muntean, Adaptive energy optimization in multimedia-centric wireless devices: A survey. Communications Surveys Tutorials, IEEE 15, 768–786 (2013)

    Article  Google Scholar 

  39. C. Schwartz, F. Lehrieder, F. Wamser, T. Hossfeld, P. Tran-Gia, Smart-phone energy consumption vs. 3g signaling load: The influence of application traffic patterns, in 2013 24th Tyrrhenian International Workshop on Digital Communications—Green ICT (TIWDC), pp. 1–6, September 2013

    Google Scholar 

  40. H. Jiang, D. Zhang, Y. Gang, Rf front end design for receiver of smart gsm mobile phone, in 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1–5, September 2010

    Google Scholar 

  41. M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, R. Morris, Smarter cities and their innovation challenges. IEEE Comput. Soc. 44, 32–39 (2011)

    Article  Google Scholar 

  42. L. Sciacca, R. Evans, Cooperative sensor networks with bandwidth constraints, in SPIE 4741. Battlespace Digitization and Network-Centric Warfare II , 192 (2002)

    Google Scholar 

  43. S. Del Barrio, M. Pelosi, G. Pedersen, On the efficiency of frequency reconfigurable high-q antennas for 4g standards. Electron. Lett. 48, 982–983 (2012)

    Article  Google Scholar 

  44. A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. Uusitalo, B. Timus, M. Fallgren, Scenarios for 5g mobile and wireless communications: the vision of the metis project. IEEE Commun. Mag. 52, 26–35 (2014)

    Article  Google Scholar 

  45. A. Lo, Y. Law, M. Jacobsson, A cellular-centric service architecture for machine-to-machine (m2m) communications. IEEE Wirel. Commun. 20, 143–151 (2013)

    Article  Google Scholar 

  46. H. kwan Lee, D.M. Kim, Y. Hwang, S.M. Yu, S.-L. Kim, Feasibility of cognitive machine-to-machine communication using cellular bands. IEEE Wirel. Commun. 20, 97–103 (2013)

    Article  Google Scholar 

  47. Car 2 car communication consortium. http://www.car-to-car.org, Accessed Aug 2014

  48. Safe intelligent mobility—test field germany (\(\text{ sim }^\text{ TD }\)). http://www.simtd.de, Accessed Aug 2014

  49. K. Borgeest, Practical papers, articles and application notes: Emc aspects of car communication systems. IEEE Electromagn. Compat. Mag. 1, 35–41 (2012)

    Article  Google Scholar 

  50. P. Hall, P. Gardner, J. Kelly, E. Ebrahimi, M. Hamid, F. Ghanem, F. Herraiz-Martinez, D. Segovia-Vargas, Reconfigurable antenna challenges for future radio systems, in IEEE European Conference on Antennas and Propagation (2009)

    Google Scholar 

  51. Y. Tawk, J. Costantine, C. Christodolou, Cognitive-radio and antenna functionalities: A tutorial. IEEE Antennas Propag. Mag. 56(01), 231–243 (2014)

    Article  Google Scholar 

  52. J. Craninckx, M. Liu, D. Hauspie, V. Giannini, T. Kim, J. Lee, M. Libois, B. Debaille, C. Soens, M. Ingels, A. Baschirotto, J. Van Driessche, L. Van der Perre, P. Vanbekbergen, A fully reconfigurable software-defined radio transceiver in 0.13um cmos, in IEEE Solid-State Circuits Conference (2007)

    Google Scholar 

  53. Lime microsystems ultra flexible FPRF solutions, 2014. http://www.limemicro.com/, Accessed Aug 2014

  54. Analog Devices AD9361 RF Agile Transceiver Datasheet (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Gonzalez Rodriguez .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez Rodriguez, E. (2016). Fundamentals. In: Reconfigurable Transceiver Architecture for Multiband RF-Frontends. Smart Sensors, Measurement and Instrumentation, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-24581-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24581-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24579-9

  • Online ISBN: 978-3-319-24581-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics